![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funi | Structured version Visualization version GIF version |
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6683. (Contributed by NM, 30-Apr-1998.) |
Ref | Expression |
---|---|
funi | ⊢ Fun I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5828 | . 2 ⊢ Rel I | |
2 | relcnv 6108 | . . . . 5 ⊢ Rel ◡ I | |
3 | coi2 6267 | . . . . 5 ⊢ (Rel ◡ I → ( I ∘ ◡ I ) = ◡ I ) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ∘ ◡ I ) = ◡ I |
5 | cnvi 6146 | . . . 4 ⊢ ◡ I = I | |
6 | 4, 5 | eqtri 2756 | . . 3 ⊢ ( I ∘ ◡ I ) = I |
7 | 6 | eqimssi 4040 | . 2 ⊢ ( I ∘ ◡ I ) ⊆ I |
8 | df-fun 6550 | . 2 ⊢ (Fun I ↔ (Rel I ∧ ( I ∘ ◡ I ) ⊆ I )) | |
9 | 1, 7, 8 | mpbir2an 710 | 1 ⊢ Fun I |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ⊆ wss 3947 I cid 5575 ◡ccnv 5677 ∘ ccom 5682 Rel wrel 5683 Fun wfun 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-fun 6550 |
This theorem is referenced by: cnvresid 6632 idfn 6683 fvi 6974 resiexd 7228 ssdomg 9021 residfi 9358 bj-funidres 36630 tendo02 40260 grimidvtxedg 47174 |
Copyright terms: Public domain | W3C validator |