MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funi Structured version   Visualization version   GIF version

Theorem funi 6585
Description: The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. See also idfn 6683. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
funi Fun I

Proof of Theorem funi
StepHypRef Expression
1 reli 5828 . 2 Rel I
2 relcnv 6108 . . . . 5 Rel I
3 coi2 6267 . . . . 5 (Rel I → ( I ∘ I ) = I )
42, 3ax-mp 5 . . . 4 ( I ∘ I ) = I
5 cnvi 6146 . . . 4 I = I
64, 5eqtri 2756 . . 3 ( I ∘ I ) = I
76eqimssi 4040 . 2 ( I ∘ I ) ⊆ I
8 df-fun 6550 . 2 (Fun I ↔ (Rel I ∧ ( I ∘ I ) ⊆ I ))
91, 7, 8mpbir2an 710 1 Fun I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wss 3947   I cid 5575  ccnv 5677  ccom 5682  Rel wrel 5683  Fun wfun 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-fun 6550
This theorem is referenced by:  cnvresid  6632  idfn  6683  fvi  6974  resiexd  7228  ssdomg  9021  residfi  9358  bj-funidres  36630  tendo02  40260  grimidvtxedg  47174
  Copyright terms: Public domain W3C validator
OSZAR »