![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvelima | Structured version Visualization version GIF version |
Description: Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
fvelima | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funbrfv 6948 | . . 3 ⊢ (Fun 𝐹 → (𝑥𝐹𝐴 → (𝐹‘𝑥) = 𝐴)) | |
2 | 1 | reximdv 3167 | . 2 ⊢ (Fun 𝐹 → (∃𝑥 ∈ 𝐵 𝑥𝐹𝐴 → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴)) |
3 | elimag 6067 | . . 3 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → (𝐴 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴)) | |
4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐹 “ 𝐵) → ∃𝑥 ∈ 𝐵 𝑥𝐹𝐴) |
5 | 2, 4 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 class class class wbr 5148 “ cima 5681 Fun wfun 6542 ‘cfv 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fv 6556 |
This theorem is referenced by: funimassd 6965 ssimaex 6983 isofrlem 7348 fimaproj 8140 tz7.49 8466 rankwflemb 9817 tcrank 9908 zorn2lem5 10524 zorn2lem6 10525 uniimadom 10568 wunr1om 10743 tskr1om 10791 tskr1om2 10792 grur1 10844 imadrhmcl 20685 iscldtop 23012 kqfvima 23647 fmfnfmlem4 23874 fmfnfm 23875 qustgpopn 24037 cphsscph 25192 c1liplem1 25942 plypf1 26159 lrrecfr 27873 ltgseg 28413 axcontlem9 28796 uhgrspan1 29129 pthdlem2lem 29594 htthlem 30740 xrofsup 32550 tocyccntz 32878 rhmimaidl 33161 dimval 33298 dimvalfi 33299 txomap 33435 qtophaus 33437 erdszelem7 34807 erdszelem8 34808 mrsub0 35126 mrsubccat 35128 mrsubcn 35129 msubrn 35139 mthmblem 35190 ivthALT 35819 ftc2nc 37175 heibor1lem 37282 aks6d1c4 41595 imacrhmcl 41751 ismrc 42121 icccncfext 45275 dirkercncflem2 45492 smfpimbor1lem1 46186 |
Copyright terms: Public domain | W3C validator |