MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgvalprc Structured version   Visualization version   GIF version

Theorem iedgvalprc 28872
Description: Degenerated case 4 for edges: The set of indexed edges of a proper class is the empty set. (Contributed by AV, 12-Oct-2020.)
Assertion
Ref Expression
iedgvalprc (𝐶 ∉ V → (iEdg‘𝐶) = ∅)

Proof of Theorem iedgvalprc
StepHypRef Expression
1 df-nel 3044 . 2 (𝐶 ∉ V ↔ ¬ 𝐶 ∈ V)
2 fvprc 6889 . 2 𝐶 ∈ V → (iEdg‘𝐶) = ∅)
31, 2sylbi 216 1 (𝐶 ∉ V → (iEdg‘𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  wnel 3043  Vcvv 3471  c0 4323  cfv 6548  iEdgciedg 28823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6500  df-fv 6556
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »