MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistani Structured version   Visualization version   GIF version

Theorem imdistani 568
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistani ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (𝜑 → (𝜓𝜒))
21anc2li 555 . 2 (𝜑 → (𝜓 → (𝜑𝜒)))
32imp 406 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  syldanl  601  cases2ALT  1047  reximia  3078  2reu1  3890  difrab  4309  rabsnifsb  4727  foconst  6826  elfvmptrab  7034  dffo4  7113  dffo5  7114  isofrlem  7348  brfvopab  7477  onint  7793  el2mpocl  8091  suppofssd  8209  tz7.48lem  8462  opthreg  9642  eltsk2g  10775  recgt1i  12142  sup2  12201  elnnnn0c  12548  elnnz1  12619  recnz  12668  eluz2b2  12936  iccsplit  13495  elfzp12  13613  1mod  13901  pfxsuff1eqwrdeq  14682  cos01gt0  16168  oddnn02np1  16325  reumodprminv  16773  clatl  18500  isacs4lem  18536  isacs5lem  18537  isnzr2hash  20458  c0rnghm  20472  isdomn4  21250  mplcoe5lem  21977  ioovolcl  25512  elply2  26143  cusgrsize  29281  rusgrpropedg  29411  wlkonprop  29485  wksonproplem  29531  wksonproplemOLD  29532  pthdlem1  29593  3oalem1  31485  elorrvc  34083  ballotlemfc0  34112  ballotlemfcc  34113  ballotlemodife  34117  ballotth  34157  nummin  34714  opnrebl2  35805  bj-eldiag2  36656  topdifinffinlem  36826  finxpsuc  36877  wl-ax11-lem3  37054  matunitlindflem2  37090  matunitlindf  37091  poimirlem28  37121  poimirlem29  37122  mblfinlem1  37130  ovoliunnfl  37135  voliunnfl  37137  itg2addnclem2  37145  areacirclem5  37185  seqpo  37220  incsequz  37221  incsequz2  37222  ismtycnv  37275  prnc  37540  dihatexv2  40812  sn-sup2  42024  prjspval  42027  tfsconcatlem  42765  omssrncard  42970  reabsifneg  43062  reabsifnpos  43063  reabsifpos  43064  reabsifnneg  43065  fperiodmullem  44685  climsuselem1  44995  climsuse  44996  0ellimcdiv  45037  fperdvper  45307  iblsplit  45354  stirlinglem11  45472  qndenserrnbllem  45682  sge0fodjrnlem  45804  upwlkbprop  47200  regt1loggt0  47609
  Copyright terms: Public domain W3C validator
OSZAR »