![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnzr2hash | Structured version Visualization version GIF version |
Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20457. (Contributed by AV, 14-Apr-2019.) |
Ref | Expression |
---|---|
isnzr2hash.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
isnzr2hash | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2728 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20453 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | isnzr2hash.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 4, 1 | ringidcl 20202 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
6 | 4, 2 | ring0cl 20203 | . . . . 5 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ 𝐵) |
7 | 1xr 11304 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 ∈ ℝ*) |
9 | prex 5434 | . . . . . . . 8 ⊢ {(1r‘𝑅), (0g‘𝑅)} ∈ V | |
10 | hashxrcl 14349 | . . . . . . . 8 ⊢ ({(1r‘𝑅), (0g‘𝑅)} ∈ V → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) | |
11 | 9, 10 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ∈ ℝ*) |
12 | 4 | fvexi 6911 | . . . . . . . 8 ⊢ 𝐵 ∈ V |
13 | hashxrcl 14349 | . . . . . . . 8 ⊢ (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*) | |
14 | 12, 13 | mp1i 13 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘𝐵) ∈ ℝ*) |
15 | 1lt2 12414 | . . . . . . . 8 ⊢ 1 < 2 | |
16 | hashprg 14387 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2)) | |
17 | 16 | biimpa 476 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) = 2) |
18 | 15, 17 | breqtrrid 5186 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘{(1r‘𝑅), (0g‘𝑅)})) |
19 | simpl 482 | . . . . . . . . 9 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵)) | |
20 | fvex 6910 | . . . . . . . . . 10 ⊢ (1r‘𝑅) ∈ V | |
21 | fvex 6910 | . . . . . . . . . 10 ⊢ (0g‘𝑅) ∈ V | |
22 | 20, 21 | prss 4824 | . . . . . . . . 9 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ↔ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
23 | 19, 22 | sylib 217 | . . . . . . . 8 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) |
24 | hashss 14401 | . . . . . . . 8 ⊢ ((𝐵 ∈ V ∧ {(1r‘𝑅), (0g‘𝑅)} ⊆ 𝐵) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) | |
25 | 12, 23, 24 | sylancr 586 | . . . . . . 7 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (♯‘{(1r‘𝑅), (0g‘𝑅)}) ≤ (♯‘𝐵)) |
26 | 8, 11, 14, 18, 25 | xrltletrd 13173 | . . . . . 6 ⊢ ((((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → 1 < (♯‘𝐵)) |
27 | 26 | ex 412 | . . . . 5 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
28 | 5, 6, 27 | syl2anc 583 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) → 1 < (♯‘𝐵))) |
29 | 28 | imdistani 568 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
30 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 𝑅 ∈ Ring) | |
31 | 4, 1, 2 | ring1ne0 20235 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (1r‘𝑅) ≠ (0g‘𝑅)) |
32 | 30, 31 | jca 511 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
33 | 29, 32 | impbii 208 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
34 | 3, 33 | bitri 275 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 Vcvv 3471 ⊆ wss 3947 {cpr 4631 class class class wbr 5148 ‘cfv 6548 1c1 11140 ℝ*cxr 11278 < clt 11279 ≤ cle 11280 2c2 12298 ♯chash 14322 Basecbs 17180 0gc0g 17421 1rcur 20121 Ringcrg 20173 NzRingcnzr 20451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-fz 13518 df-hash 14323 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-nzr 20452 |
This theorem is referenced by: 0ringnnzr 20462 prmidl0 33179 qsidomlem1 33181 krull 33204 el0ldepsnzr 47535 |
Copyright terms: Public domain | W3C validator |