MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnzr2hash Structured version   Visualization version   GIF version

Theorem isnzr2hash 20458
Description: Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20457. (Contributed by AV, 14-Apr-2019.)
Hypothesis
Ref Expression
isnzr2hash.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2hash (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))

Proof of Theorem isnzr2hash
StepHypRef Expression
1 eqid 2728 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2728 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 20453 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2hash.b . . . . . 6 𝐵 = (Base‘𝑅)
54, 1ringidcl 20202 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
64, 2ring0cl 20203 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
7 1xr 11304 . . . . . . . 8 1 ∈ ℝ*
87a1i 11 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 ∈ ℝ*)
9 prex 5434 . . . . . . . 8 {(1r𝑅), (0g𝑅)} ∈ V
10 hashxrcl 14349 . . . . . . . 8 ({(1r𝑅), (0g𝑅)} ∈ V → (♯‘{(1r𝑅), (0g𝑅)}) ∈ ℝ*)
119, 10mp1i 13 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) ∈ ℝ*)
124fvexi 6911 . . . . . . . 8 𝐵 ∈ V
13 hashxrcl 14349 . . . . . . . 8 (𝐵 ∈ V → (♯‘𝐵) ∈ ℝ*)
1412, 13mp1i 13 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘𝐵) ∈ ℝ*)
15 1lt2 12414 . . . . . . . 8 1 < 2
16 hashprg 14387 . . . . . . . . 9 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((1r𝑅) ≠ (0g𝑅) ↔ (♯‘{(1r𝑅), (0g𝑅)}) = 2))
1716biimpa 476 . . . . . . . 8 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) = 2)
1815, 17breqtrrid 5186 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 < (♯‘{(1r𝑅), (0g𝑅)}))
19 simpl 482 . . . . . . . . 9 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → ((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵))
20 fvex 6910 . . . . . . . . . 10 (1r𝑅) ∈ V
21 fvex 6910 . . . . . . . . . 10 (0g𝑅) ∈ V
2220, 21prss 4824 . . . . . . . . 9 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ↔ {(1r𝑅), (0g𝑅)} ⊆ 𝐵)
2319, 22sylib 217 . . . . . . . 8 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → {(1r𝑅), (0g𝑅)} ⊆ 𝐵)
24 hashss 14401 . . . . . . . 8 ((𝐵 ∈ V ∧ {(1r𝑅), (0g𝑅)} ⊆ 𝐵) → (♯‘{(1r𝑅), (0g𝑅)}) ≤ (♯‘𝐵))
2512, 23, 24sylancr 586 . . . . . . 7 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → (♯‘{(1r𝑅), (0g𝑅)}) ≤ (♯‘𝐵))
268, 11, 14, 18, 25xrltletrd 13173 . . . . . 6 ((((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) ∧ (1r𝑅) ≠ (0g𝑅)) → 1 < (♯‘𝐵))
2726ex 412 . . . . 5 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((1r𝑅) ≠ (0g𝑅) → 1 < (♯‘𝐵)))
285, 6, 27syl2anc 583 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → 1 < (♯‘𝐵)))
2928imdistani 568 . . 3 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
30 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → 𝑅 ∈ Ring)
314, 1, 2ring1ne0 20235 . . . 4 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (1r𝑅) ≠ (0g𝑅))
3230, 31jca 511 . . 3 ((𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)) → (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
3329, 32impbii 208 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
343, 33bitri 275 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2937  Vcvv 3471  wss 3947  {cpr 4631   class class class wbr 5148  cfv 6548  1c1 11140  *cxr 11278   < clt 11279  cle 11280  2c2 12298  chash 14322  Basecbs 17180  0gc0g 17421  1rcur 20121  Ringcrg 20173  NzRingcnzr 20451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-n0 12504  df-xnn0 12576  df-z 12590  df-uz 12854  df-fz 13518  df-hash 14323  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-plusg 17246  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-minusg 18894  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-nzr 20452
This theorem is referenced by:  0ringnnzr  20462  prmidl0  33179  qsidomlem1  33181  krull  33204  el0ldepsnzr  47535
  Copyright terms: Public domain W3C validator
OSZAR »