![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elorrvc | Structured version Visualization version GIF version |
Description: Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
elorrvc | ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrvccel.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | orrvccel.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | 1, 2 | rrvdm 34066 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
4 | 3 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ dom 𝑋 ↔ 𝑧 ∈ ∪ dom 𝑃)) |
5 | 4 | biimprd 247 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ∪ dom 𝑃 → 𝑧 ∈ dom 𝑋)) |
6 | 5 | imdistani 568 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝜑 ∧ 𝑧 ∈ dom 𝑋)) |
7 | 1, 2 | rrvfn 34065 | . . . 4 ⊢ (𝜑 → 𝑋 Fn ∪ dom 𝑃) |
8 | fnfun 6654 | . . . 4 ⊢ (𝑋 Fn ∪ dom 𝑃 → Fun 𝑋) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝜑 → Fun 𝑋) |
10 | orrvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | 9, 2, 10 | elorvc 34079 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
12 | 6, 11 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∪ cuni 4908 class class class wbr 5148 dom cdm 5678 Fun wfun 6542 Fn wfn 6543 ‘cfv 6548 (class class class)co 7420 Probcprb 34027 rRndVarcrrv 34060 ∘RV/𝑐corvc 34075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-pre-lttri 11213 ax-pre-lttrn 11214 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-ioo 13361 df-topgen 17425 df-top 22809 df-bases 22862 df-esum 33647 df-siga 33728 df-sigagen 33758 df-brsiga 33801 df-meas 33815 df-mbfm 33869 df-prob 34028 df-rrv 34061 df-orvc 34076 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |