![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnanrd | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intnanrd | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simpl 481 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: bianfd 533 3bior1fand 1472 pr1eqbg 4862 iresn0n0 6062 fvmptopabOLD 7481 frxp2 8155 frxp3 8162 wemappo 9580 axrepnd 10625 axunnd 10627 fzpreddisj 13590 sadadd2lem2 16432 smumullem 16474 nndvdslegcd 16487 divgcdnn 16497 sqgcd 16543 coprm 16689 isnmnd 18705 nfimdetndef 22511 mdetfval1 22512 ibladdlem 25769 lgsval2lem 27260 lgsval4a 27272 lgsdilem 27277 2sqcoprm 27388 addsqn2reurex2 27398 nosepdmlem 27636 nodenselem8 27644 nosupbnd2lem1 27668 nbgrnself 29192 wwlks 29666 iswspthsnon 29687 clwwlknon1nloop 29929 clwwlknon1le1 29931 nfrgr2v 30102 hashxpe 32597 acycgr0v 34791 prclisacycgr 34794 fmlasucdisj 35042 dfrdg4 35580 finxpreclem3 36905 finxpreclem5 36907 ibladdnclem 37182 dihatlat 40839 xppss12 41748 jm2.23 42448 rexanuz2nf 44904 ltnelicc 44911 limciccioolb 45038 dvmptfprodlem 45361 stoweidlem26 45443 fourierdlem12 45536 fourierdlem42 45566 divgcdoddALTV 47051 |
Copyright terms: Public domain | W3C validator |