MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfimdetndef Structured version   Visualization version   GIF version

Theorem nfimdetndef 22519
Description: The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018.)
Hypothesis
Ref Expression
nfimdetndef.d 𝐷 = (𝑁 maDet 𝑅)
Assertion
Ref Expression
nfimdetndef (𝑁 ∉ Fin → 𝐷 = ∅)

Proof of Theorem nfimdetndef
Dummy variables 𝑚 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfimdetndef.d . . 3 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2728 . . 3 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2728 . . 3 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 eqid 2728 . . 3 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
5 eqid 2728 . . 3 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
6 eqid 2728 . . 3 (pmSgn‘𝑁) = (pmSgn‘𝑁)
7 eqid 2728 . . 3 (.r𝑅) = (.r𝑅)
8 eqid 2728 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
91, 2, 3, 4, 5, 6, 7, 8mdetfval 22516 . 2 𝐷 = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥)))))))
10 df-nel 3044 . . . . . . 7 (𝑁 ∉ Fin ↔ ¬ 𝑁 ∈ Fin)
1110biimpi 215 . . . . . 6 (𝑁 ∉ Fin → ¬ 𝑁 ∈ Fin)
1211intnanrd 488 . . . . 5 (𝑁 ∉ Fin → ¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
13 matbas0 22338 . . . . 5 (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
1412, 13syl 17 . . . 4 (𝑁 ∉ Fin → (Base‘(𝑁 Mat 𝑅)) = ∅)
1514mpteq1d 5247 . . 3 (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))))
16 mpt0 6702 . . 3 (𝑚 ∈ ∅ ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = ∅
1715, 16eqtrdi 2784 . 2 (𝑁 ∉ Fin → (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑥𝑁 ↦ ((𝑝𝑥)𝑚𝑥))))))) = ∅)
189, 17eqtrid 2780 1 (𝑁 ∉ Fin → 𝐷 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wnel 3043  Vcvv 3473  c0 4326  cmpt 5235  ccom 5686  cfv 6553  (class class class)co 7426  Fincfn 8972  Basecbs 17189  .rcmulr 17243   Σg cgsu 17431  SymGrpcsymg 19335  pmSgncpsgn 19458  mulGrpcmgp 20088  ℤRHomczrh 21439   Mat cmat 22335   maDet cmdat 22514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-1cn 11206  ax-addcl 11208
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-nn 12253  df-slot 17160  df-ndx 17172  df-base 17190  df-mat 22336  df-mdet 22515
This theorem is referenced by:  mdetfval1  22520
  Copyright terms: Public domain W3C validator
OSZAR »