![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgsval4a | Structured version Visualization version GIF version |
Description: Same as lgsval4 27270 for positive 𝑁. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsval4.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) |
Ref | Expression |
---|---|
lgsval4a | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ) | |
2 | nnz 12617 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 2 | adantl 480 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
4 | nnne0 12284 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
5 | 4 | adantl 480 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
6 | lgsval4.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) | |
7 | 6 | lgsval4 27270 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) |
8 | 1, 3, 5, 7 | syl3anc 1368 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) |
9 | nngt0 12281 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
10 | 9 | adantl 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
11 | 0re 11254 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
12 | nnre 12257 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
13 | 12 | adantl 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
14 | ltnsym 11350 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → ¬ 𝑁 < 0)) | |
15 | 11, 13, 14 | sylancr 585 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 → ¬ 𝑁 < 0)) |
16 | 10, 15 | mpd 15 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ 𝑁 < 0) |
17 | 16 | intnanrd 488 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 < 0 ∧ 𝐴 < 0)) |
18 | 17 | iffalsed 4543 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) = 1) |
19 | nnnn0 12517 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
20 | 19 | adantl 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
21 | 20 | nn0ge0d 12573 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 ≤ 𝑁) |
22 | 13, 21 | absidd 15409 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (abs‘𝑁) = 𝑁) |
23 | 22 | fveq2d 6906 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘(abs‘𝑁)) = (seq1( · , 𝐹)‘𝑁)) |
24 | 18, 23 | oveq12d 7444 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) = (1 · (seq1( · , 𝐹)‘𝑁))) |
25 | simpr 483 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
26 | nnuz 12903 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
27 | 25, 26 | eleqtrdi 2839 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ≥‘1)) |
28 | 6 | lgsfcl3 27271 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶ℤ) |
29 | 1, 3, 5, 28 | syl3anc 1368 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐹:ℕ⟶ℤ) |
30 | elfznn 13570 | . . . . . 6 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | |
31 | ffvelcdm 7096 | . . . . . 6 ⊢ ((𝐹:ℕ⟶ℤ ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) ∈ ℤ) | |
32 | 29, 30, 31 | syl2an 594 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝐹‘𝑥) ∈ ℤ) |
33 | zmulcl 12649 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
34 | 33 | adantl 480 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) |
35 | 27, 32, 34 | seqcl 14027 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℤ) |
36 | 35 | zcnd 12705 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℂ) |
37 | 36 | mullidd 11270 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (1 · (seq1( · , 𝐹)‘𝑁)) = (seq1( · , 𝐹)‘𝑁)) |
38 | 8, 24, 37 | 3eqtrd 2772 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , 𝐹)‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ifcif 4532 class class class wbr 5152 ↦ cmpt 5235 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 ℝcr 11145 0cc0 11146 1c1 11147 · cmul 11151 < clt 11286 -cneg 11483 ℕcn 12250 ℕ0cn0 12510 ℤcz 12596 ℤ≥cuz 12860 ...cfz 13524 seqcseq 14006 ↑cexp 14066 abscabs 15221 ℙcprime 16649 pCnt cpc 16812 /L clgs 27247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-oadd 8497 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-q 12971 df-rp 13015 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-seq 14007 df-exp 14067 df-hash 14330 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-dvds 16239 df-gcd 16477 df-prm 16650 df-phi 16742 df-pc 16813 df-lgs 27248 |
This theorem is referenced by: lgsmod 27276 |
Copyright terms: Public domain | W3C validator |