![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issconn | Structured version Visualization version GIF version |
Description: The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
issconn | ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7432 | . . 3 ⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) | |
2 | fveq2 6900 | . . . . 5 ⊢ (𝑗 = 𝐽 → ( ≃ph‘𝑗) = ( ≃ph‘𝐽)) | |
3 | 2 | breqd 5161 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}) ↔ 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}))) |
4 | 3 | imbi2d 339 | . . 3 ⊢ (𝑗 = 𝐽 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
5 | 1, 4 | raleqbidv 3338 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)})) ↔ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
6 | df-sconn 34837 | . 2 ⊢ SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} | |
7 | 5, 6 | elrab2 3685 | 1 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3057 {csn 4630 class class class wbr 5150 × cxp 5678 ‘cfv 6551 (class class class)co 7424 0cc0 11144 1c1 11145 [,]cicc 13365 Cn ccn 23146 IIcii 24813 ≃phcphtpc 24913 PConncpconn 34834 SConncsconn 34835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-iota 6503 df-fv 6559 df-ov 7427 df-sconn 34837 |
This theorem is referenced by: sconnpconn 34842 sconnpht 34844 sconnpi1 34854 txsconn 34856 cvxsconn 34858 |
Copyright terms: Public domain | W3C validator |