![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqd | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq 5154 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 class class class wbr 5152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2720 df-clel 2806 df-br 5153 |
This theorem is referenced by: breq123d 5166 breqdi 5167 sbcbr123 5206 sbcbr 5207 sbcbr12g 5208 fvmptopab 7480 fvmptopabOLD 7481 brfvopab 7483 mptmpoopabbrd 8091 mptmpoopabbrdOLD 8092 mptmpoopabovd 8093 mptmpoopabbrdOLDOLD 8094 mptmpoopabovdOLD 8095 bropopvvv 8101 bropfvvvvlem 8102 sprmpod 8236 fprlem1 8312 wfrlem5OLD 8340 supeq123d 9481 frrlem15 9788 fpwwe2lem11 10672 fpwwe2 10674 brtrclfv 14989 dfrtrclrec2 15045 rtrclreclem3 15047 relexpindlem 15050 shftfib 15059 2shfti 15067 prdsval 17444 pwsle 17481 pwsleval 17482 imasleval 17530 issect 17743 isinv 17750 brcic 17788 ciclcl 17792 cicrcl 17793 isfunc 17857 funcres2c 17897 isfull 17906 isfth 17910 fullpropd 17916 fthpropd 17917 elhoma 18028 isposd 18322 pltval 18331 lubfval 18349 glbfval 18362 joinfval 18372 meetfval 18386 odujoin 18407 odumeet 18409 ipole 18533 eqgval 19139 unitpropd 20363 rngcifuestrc 20579 znleval 21495 ltbval 21988 opsrval 21991 lmbr 23182 metustexhalf 24485 metucn 24500 isphtpc 24940 taylthlem1 26328 ulmval 26336 tgjustf 28297 iscgrg 28336 legov 28409 ishlg 28426 opphllem5 28575 opphllem6 28576 hpgbr 28584 iscgra 28633 acopy 28657 isinag 28662 isleag 28671 iseqlg 28691 wlkonprop 29492 wksonproplem 29538 wksonproplemOLD 29539 istrlson 29541 upgrwlkdvspth 29573 ispthson 29576 isspthson 29577 cyclispthon 29635 wspthsn 29679 wspthsnon 29683 iswspthsnon 29687 1pthon2v 29983 3wlkond 30001 dfconngr1 30018 isconngr 30019 isconngr1 30020 1conngr 30024 conngrv2edg 30025 minvecolem4b 30708 minvecolem4 30710 br8d 32421 ressprs 32711 resstos 32715 mntoval 32730 mgcoval 32734 mgcval 32735 isomnd 32802 submomnd 32811 ogrpaddltrd 32820 isinftm 32910 isorng 33038 rprmval 33258 metidv 33526 pstmfval 33530 faeval 33898 brfae 33900 isacycgr 34788 isacycgr1 34789 issconn 34869 satfbrsuc 35009 mclsax 35212 bj-imdirval3 36696 unceq 37103 alrmomodm 37863 relbrcoss 37950 lcvbr 38525 isopos 38684 cmtvalN 38715 isoml 38742 cvrfval 38772 cvrval 38773 pats 38789 isatl 38803 iscvlat 38827 ishlat1 38856 llnset 39010 lplnset 39034 lvolset 39077 lineset 39243 psubspset 39249 pmapfval 39261 lautset 39587 ldilfset 39613 ltrnfset 39622 trlfset 39665 diaffval 40535 dicffval 40679 dihffval 40735 prjspnvs 42075 fnwe2lem2 42506 fnwe2lem3 42507 aomclem8 42516 brfvid 43148 brfvidRP 43149 brfvrcld 43152 brfvrcld2 43153 iunrelexpuztr 43180 brtrclfv2 43188 neicvgnvor 43577 neicvgel1 43580 fperdvper 45336 upwlkbprop 47278 isprsd 48052 lubeldm2d 48055 glbeldm2d 48056 catprsc 48097 catprsc2 48098 prsthinc 48138 prstcle 48154 |
Copyright terms: Public domain | W3C validator |