![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elhoma | Structured version Visualization version GIF version |
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
elhoma | ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
2 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
5 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | homaval 18025 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
8 | 7 | breqd 5161 | . 2 ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ 𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹)) |
9 | brxp 5729 | . . 3 ⊢ (𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 ∈ {〈𝑋, 𝑌〉} ∧ 𝐹 ∈ (𝑋𝐽𝑌))) | |
10 | opex 5468 | . . . . 5 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
11 | 10 | elsn2 4670 | . . . 4 ⊢ (𝑍 ∈ {〈𝑋, 𝑌〉} ↔ 𝑍 = 〈𝑋, 𝑌〉) |
12 | 11 | anbi1i 622 | . . 3 ⊢ ((𝑍 ∈ {〈𝑋, 𝑌〉} ∧ 𝐹 ∈ (𝑋𝐽𝑌)) ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌))) |
13 | 9, 12 | bitri 274 | . 2 ⊢ (𝑍({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌))) |
14 | 8, 13 | bitrdi 286 | 1 ⊢ (𝜑 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {csn 4630 〈cop 4636 class class class wbr 5150 × cxp 5678 ‘cfv 6551 (class class class)co 7424 Basecbs 17185 Hom chom 17249 Catccat 17649 Homachoma 18017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-homa 18020 |
This theorem is referenced by: elhomai 18027 homa1 18031 homahom2 18032 |
Copyright terms: Public domain | W3C validator |