![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elhomai | Structured version Visualization version GIF version |
Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
elhomai.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) |
Ref | Expression |
---|---|
elhomai | ⊢ (𝜑 → 〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2729 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 = 〈𝑋, 𝑌〉) | |
2 | elhomai.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐽𝑌)) | |
3 | homarcl.h | . . 3 ⊢ 𝐻 = (Homa‘𝐶) | |
4 | homafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
5 | homafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
6 | homaval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐶) | |
7 | homaval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | homaval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 3, 4, 5, 6, 7, 8 | elhoma 18028 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹 ↔ (〈𝑋, 𝑌〉 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
10 | 1, 2, 9 | mpbir2and 711 | 1 ⊢ (𝜑 → 〈𝑋, 𝑌〉(𝑋𝐻𝑌)𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 〈cop 4638 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 Hom chom 17251 Catccat 17651 Homachoma 18019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-homa 18022 |
This theorem is referenced by: elhomai2 18030 |
Copyright terms: Public domain | W3C validator |