![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homahom2 | Structured version Visualization version GIF version |
Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
homahom.j | ⊢ 𝐽 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
homahom2 | ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝐹 ∈ (𝑋𝐽𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5150 | . . . 4 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 ↔ 〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌)) | |
2 | homahom.h | . . . . 5 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | eqid 2725 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
4 | 2 | homarcl 18020 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
5 | homahom.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐶) | |
6 | 2, 3 | homarcl2 18027 | . . . . . 6 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
7 | 6 | simpld 493 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝑋 ∈ (Base‘𝐶)) |
8 | 6 | simprd 494 | . . . . 5 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → 𝑌 ∈ (Base‘𝐶)) |
9 | 2, 3, 4, 5, 7, 8 | elhoma 18024 | . . . 4 ⊢ (〈𝑍, 𝐹〉 ∈ (𝑋𝐻𝑌) → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
10 | 1, 9 | sylbi 216 | . . 3 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍(𝑋𝐻𝑌)𝐹 ↔ (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌)))) |
11 | 10 | ibi 266 | . 2 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → (𝑍 = 〈𝑋, 𝑌〉 ∧ 𝐹 ∈ (𝑋𝐽𝑌))) |
12 | 11 | simprd 494 | 1 ⊢ (𝑍(𝑋𝐻𝑌)𝐹 → 𝐹 ∈ (𝑋𝐽𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 〈cop 4636 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 Hom chom 17247 Homachoma 18015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-homa 18018 |
This theorem is referenced by: homahom 18031 |
Copyright terms: Public domain | W3C validator |