![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homaval | Structured version Visualization version GIF version |
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
homaval | ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7423 | . 2 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
2 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
6 | 2, 3, 4, 5 | homafval 18018 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑧 ∈ (𝐵 × 𝐵) ↦ ({𝑧} × (𝐽‘𝑧)))) |
7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) | |
8 | 7 | sneqd 4641 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → {𝑧} = {〈𝑋, 𝑌〉}) |
9 | 7 | fveq2d 6901 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝐽‘〈𝑋, 𝑌〉)) |
10 | df-ov 7423 | . . . . 5 ⊢ (𝑋𝐽𝑌) = (𝐽‘〈𝑋, 𝑌〉) | |
11 | 9, 10 | eqtr4di 2786 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝑋𝐽𝑌)) |
12 | 8, 11 | xpeq12d 5709 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ({𝑧} × (𝐽‘𝑧)) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
13 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
14 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
15 | 13, 14 | opelxpd 5717 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
16 | snex 5433 | . . . . 5 ⊢ {〈𝑋, 𝑌〉} ∈ V | |
17 | ovex 7453 | . . . . 5 ⊢ (𝑋𝐽𝑌) ∈ V | |
18 | 16, 17 | xpex 7755 | . . . 4 ⊢ ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V) |
20 | 6, 12, 15, 19 | fvmptd 7012 | . 2 ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
21 | 1, 20 | eqtrid 2780 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 {csn 4629 〈cop 4635 × cxp 5676 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 Hom chom 17244 Catccat 17644 Homachoma 18012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-homa 18015 |
This theorem is referenced by: elhoma 18021 |
Copyright terms: Public domain | W3C validator |