Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolset Structured version   Visualization version   GIF version

Theorem lvolset 39045
Description: The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐵 = (Base‘𝐾)
lvolset.c 𝐶 = ( ⋖ ‘𝐾)
lvolset.p 𝑃 = (LPlanes‘𝐾)
lvolset.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolset (𝐾𝐴𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
Distinct variable groups:   𝑦,𝑃   𝑥,𝐵   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem lvolset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3490 . 2 (𝐾𝐴𝐾 ∈ V)
2 lvolset.v . . 3 𝑉 = (LVols‘𝐾)
3 fveq2 6897 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lvolset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2786 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6897 . . . . . . 7 (𝑘 = 𝐾 → (LPlanes‘𝑘) = (LPlanes‘𝐾))
7 lvolset.p . . . . . . 7 𝑃 = (LPlanes‘𝐾)
86, 7eqtr4di 2786 . . . . . 6 (𝑘 = 𝐾 → (LPlanes‘𝑘) = 𝑃)
9 fveq2 6897 . . . . . . . 8 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
10 lvolset.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
119, 10eqtr4di 2786 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
1211breqd 5159 . . . . . 6 (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥𝑦𝐶𝑥))
138, 12rexeqbidv 3340 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦𝑃 𝑦𝐶𝑥))
145, 13rabeqbidv 3446 . . . 4 (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
15 df-lvols 38973 . . . 4 LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LPlanes‘𝑘)𝑦( ⋖ ‘𝑘)𝑥})
164fvexi 6911 . . . . 5 𝐵 ∈ V
1716rabex 5334 . . . 4 {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥} ∈ V
1814, 15, 17fvmpt 7005 . . 3 (𝐾 ∈ V → (LVols‘𝐾) = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
192, 18eqtrid 2780 . 2 (𝐾 ∈ V → 𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
201, 19syl 17 1 (𝐾𝐴𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wrex 3067  {crab 3429  Vcvv 3471   class class class wbr 5148  cfv 6548  Basecbs 17180  ccvr 38734  LPlanesclpl 38965  LVolsclvol 38966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-lvols 38973
This theorem is referenced by:  islvol  39046
  Copyright terms: Public domain W3C validator
OSZAR »