Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvrcld Structured version   Visualization version   GIF version

Theorem brfvrcld 43124
Description: If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020.)
Hypothesis
Ref Expression
brfvrcld.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
brfvrcld (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))

Proof of Theorem brfvrcld
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 43109 . . 3 r* = (𝑟 ∈ V ↦ 𝑛 ∈ {0, 1} (𝑟𝑟𝑛))
2 brfvrcld.r . . 3 (𝜑𝑅 ∈ V)
3 0nn0 12523 . . . . 5 0 ∈ ℕ0
4 1nn0 12524 . . . . 5 1 ∈ ℕ0
5 prssi 4827 . . . . 5 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
63, 4, 5mp2an 690 . . . 4 {0, 1} ⊆ ℕ0
76a1i 11 . . 3 (𝜑 → {0, 1} ⊆ ℕ0)
81, 2, 7brmptiunrelexpd 43116 . 2 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵))
9 oveq2 7432 . . . . 5 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
109breqd 5161 . . . 4 (𝑛 = 0 → (𝐴(𝑅𝑟𝑛)𝐵𝐴(𝑅𝑟0)𝐵))
11 oveq2 7432 . . . . 5 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
1211breqd 5161 . . . 4 (𝑛 = 1 → (𝐴(𝑅𝑟𝑛)𝐵𝐴(𝑅𝑟1)𝐵))
1310, 12rexprg 4703 . . 3 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))
143, 4, 13mp2an 690 . 2 (∃𝑛 ∈ {0, 1}𝐴(𝑅𝑟𝑛)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵))
158, 14bitrdi 286 1 (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅𝑟0)𝐵𝐴(𝑅𝑟1)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845   = wceq 1533  wcel 2098  wrex 3066  Vcvv 3471  wss 3947  {cpr 4632   class class class wbr 5150  cfv 6551  (class class class)co 7424  0cc0 11144  1c1 11145  0cn0 12508  𝑟crelexp 15004  r*crcl 43105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-seq 14005  df-relexp 15005  df-rcl 43106
This theorem is referenced by:  brfvrcld2  43125
  Copyright terms: Public domain W3C validator
OSZAR »