![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brmptiunrelexpd | Structured version Visualization version GIF version |
Description: If two elements are connected by an indexed union of relational powers, then they are connected via 𝑛 instances the relation, for some 𝑛. Generalization of dfrtrclrec2 15045. (Contributed by RP, 21-Jul-2020.) |
Ref | Expression |
---|---|
brmptiunrelexpd.c | ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
brmptiunrelexpd.r | ⊢ (𝜑 → 𝑅 ∈ V) |
brmptiunrelexpd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
Ref | Expression |
---|---|
brmptiunrelexpd | ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brmptiunrelexpd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | brmptiunrelexpd.n | . . 3 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
3 | nn0ex 12516 | . . . 4 ⊢ ℕ0 ∈ V | |
4 | 3 | ssex 5325 | . . 3 ⊢ (𝑁 ⊆ ℕ0 → 𝑁 ∈ V) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ V) |
6 | brmptiunrelexpd.c | . . 3 ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) | |
7 | 6 | briunov2 43143 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑁 ∈ V) → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) |
8 | 1, 5, 7 | syl2anc 582 | 1 ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 Vcvv 3473 ⊆ wss 3949 ∪ ciun 5000 class class class wbr 5152 ↦ cmpt 5235 ‘cfv 6553 (class class class)co 7426 ℕ0cn0 12510 ↑𝑟crelexp 15006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-1cn 11204 ax-addcl 11206 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-nn 12251 df-n0 12511 |
This theorem is referenced by: brfvidRP 43149 brfvrcld 43152 brfvtrcld 43182 brfvrtrcld 43195 |
Copyright terms: Public domain | W3C validator |