Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrvtxuhgr Structured version   Visualization version   GIF version

Theorem isubgrvtxuhgr 47325
Description: The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025.)
Hypotheses
Ref Expression
isubgriedg.v 𝑉 = (Vtx‘𝐺)
isubgriedg.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
isubgrvtxuhgr (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, 𝐸⟩)

Proof of Theorem isubgrvtxuhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 4000 . . 3 (𝐺 ∈ UHGraph → 𝑉𝑉)
2 isubgriedg.v . . . 4 𝑉 = (Vtx‘𝐺)
3 isubgriedg.e . . . 4 𝐸 = (iEdg‘𝐺)
42, 3isisubgr 47323 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑉) → (𝐺 ISubGr 𝑉) = ⟨𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})⟩)
51, 4mpdan 685 . 2 (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})⟩)
63uhgrfun 28950 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐸)
7 funrel 6571 . . . . 5 (Fun 𝐸 → Rel 𝐸)
86, 7syl 17 . . . 4 (𝐺 ∈ UHGraph → Rel 𝐸)
92, 3uhgrf 28946 . . . . 5 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
10 ffvelcdm 7090 . . . . . . . 8 ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸𝑥) ∈ (𝒫 𝑉 ∖ {∅}))
11 eldifi 4123 . . . . . . . . 9 ((𝐸𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸𝑥) ∈ 𝒫 𝑉)
1211elpwid 4613 . . . . . . . 8 ((𝐸𝑥) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸𝑥) ⊆ 𝑉)
1310, 12syl 17 . . . . . . 7 ((𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑥 ∈ dom 𝐸) → (𝐸𝑥) ⊆ 𝑉)
1413rabeqcda 3430 . . . . . 6 (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉} = dom 𝐸)
1514eqimsscd 4034 . . . . 5 (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})
169, 15syl 17 . . . 4 (𝐺 ∈ UHGraph → dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})
17 relssres 6027 . . . 4 ((Rel 𝐸 ∧ dom 𝐸 ⊆ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉}) → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉}) = 𝐸)
188, 16, 17syl2anc 582 . . 3 (𝐺 ∈ UHGraph → (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉}) = 𝐸)
1918opeq2d 4882 . 2 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) ⊆ 𝑉})⟩ = ⟨𝑉, 𝐸⟩)
205, 19eqtrd 2765 1 (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = ⟨𝑉, 𝐸⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3418  cdif 3941  wss 3944  c0 4322  𝒫 cpw 4604  {csn 4630  cop 4636  dom cdm 5678  cres 5680  Rel wrel 5683  Fun wfun 6543  wf 6545  cfv 6549  (class class class)co 7419  Vtxcvtx 28880  iEdgciedg 28881  UHGraphcuhgr 28940   ISubGr cisubgr 47321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-uhgr 28942  df-isubgr 47322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »