![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lattrd | Structured version Visualization version GIF version |
Description: A lattice ordering is transitive. Deduction version of lattr 18436. (Contributed by NM, 3-Sep-2012.) |
Ref | Expression |
---|---|
lattrd.b | ⊢ 𝐵 = (Base‘𝐾) |
lattrd.l | ⊢ ≤ = (le‘𝐾) |
lattrd.1 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
lattrd.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lattrd.3 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
lattrd.4 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
lattrd.5 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
lattrd.6 | ⊢ (𝜑 → 𝑌 ≤ 𝑍) |
Ref | Expression |
---|---|
lattrd | ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lattrd.5 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | lattrd.6 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑍) | |
3 | lattrd.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | lattrd.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | lattrd.3 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | lattrd.4 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | lattrd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | lattrd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
9 | 7, 8 | lattr 18436 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
10 | 3, 4, 5, 6, 9 | syl13anc 1370 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
11 | 1, 2, 10 | mp2and 698 | 1 ⊢ (𝜑 → 𝑋 ≤ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 Basecbs 17180 lecple 17240 Latclat 18423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-dm 5688 df-iota 6500 df-fv 6556 df-poset 18305 df-lat 18424 |
This theorem is referenced by: latmlej11 18470 latjass 18475 lubun 18507 cvlcvr1 38811 exatleN 38877 2atjm 38918 2llnmat 38997 llnmlplnN 39012 2llnjaN 39039 2lplnja 39092 dalem5 39140 lncmp 39256 2lnat 39257 2llnma1b 39259 cdlema1N 39264 paddasslem5 39297 paddasslem12 39304 paddasslem13 39305 dalawlem3 39346 dalawlem5 39348 dalawlem6 39349 dalawlem7 39350 dalawlem8 39351 dalawlem11 39354 dalawlem12 39355 pl42lem1N 39452 lhpexle2lem 39482 lhpexle3lem 39484 4atexlemtlw 39540 4atexlemc 39542 cdleme15 39751 cdleme17b 39760 cdleme22e 39817 cdleme22eALTN 39818 cdleme23a 39822 cdleme28a 39843 cdleme30a 39851 cdleme32e 39918 cdleme35b 39923 trlord 40042 cdlemg10 40114 cdlemg11b 40115 cdlemg17a 40134 cdlemg35 40186 tendococl 40245 tendopltp 40253 cdlemi1 40291 cdlemk11 40322 cdlemk5u 40334 cdlemk11u 40344 cdlemk52 40427 dialss 40519 diaglbN 40528 diaintclN 40531 dia2dimlem1 40537 cdlemm10N 40591 djajN 40610 dibglbN 40639 dibintclN 40640 diblss 40643 cdlemn10 40679 dihord1 40691 dihord2pre2 40699 dihopelvalcpre 40721 dihord5apre 40735 dihmeetlem1N 40763 dihglblem2N 40767 dihmeetlem2N 40772 dihglbcpreN 40773 dihmeetlem3N 40778 |
Copyright terms: Public domain | W3C validator |