Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem5 Structured version   Visualization version   GIF version

Theorem dalem5 39140
Description: Lemma for dath 39209. Atom 𝑈 (in plane 𝑍 = 𝑆𝑇𝑈) belongs to the 3-dimensional volume formed by 𝑌 and 𝐶. (Contributed by NM, 21-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem5.o 𝑂 = (LPlanes‘𝐾)
dalem5.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem5.w 𝑊 = (𝑌 𝐶)
Assertion
Ref Expression
dalem5 (𝜑𝑈 𝑊)

Proof of Theorem dalem5
StepHypRef Expression
1 eqid 2728 . 2 (Base‘𝐾) = (Base‘𝐾)
2 dalemc.l . 2 = (le‘𝐾)
3 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
43dalemkelat 39097 . 2 (𝜑𝐾 ∈ Lat)
5 dalemc.a . . 3 𝐴 = (Atoms‘𝐾)
63, 5dalemueb 39117 . 2 (𝜑𝑈 ∈ (Base‘𝐾))
73dalemkehl 39096 . . 3 (𝜑𝐾 ∈ HL)
83dalemrea 39101 . . 3 (𝜑𝑅𝐴)
9 dalemc.j . . . 4 = (join‘𝐾)
10 dalem5.o . . . 4 𝑂 = (LPlanes‘𝐾)
11 dalem5.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
123, 2, 9, 5, 10, 11dalemcea 39133 . . 3 (𝜑𝐶𝐴)
131, 9, 5hlatjcl 38839 . . 3 ((𝐾 ∈ HL ∧ 𝑅𝐴𝐶𝐴) → (𝑅 𝐶) ∈ (Base‘𝐾))
147, 8, 12, 13syl3anc 1369 . 2 (𝜑 → (𝑅 𝐶) ∈ (Base‘𝐾))
15 dalem5.w . . 3 𝑊 = (𝑌 𝐶)
163, 10dalemyeb 39122 . . . 4 (𝜑𝑌 ∈ (Base‘𝐾))
173, 5dalemceb 39111 . . . 4 (𝜑𝐶 ∈ (Base‘𝐾))
181, 9latjcl 18431 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾)) → (𝑌 𝐶) ∈ (Base‘𝐾))
194, 16, 17, 18syl3anc 1369 . . 3 (𝜑 → (𝑌 𝐶) ∈ (Base‘𝐾))
2015, 19eqeltrid 2833 . 2 (𝜑𝑊 ∈ (Base‘𝐾))
213dalemclrju 39109 . . 3 (𝜑𝐶 (𝑅 𝑈))
223dalemuea 39104 . . . 4 (𝜑𝑈𝐴)
233dalempea 39099 . . . . 5 (𝜑𝑃𝐴)
24 simp313 1320 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → ¬ 𝐶 (𝑅 𝑃))
253, 24sylbi 216 . . . . 5 (𝜑 → ¬ 𝐶 (𝑅 𝑃))
262, 9, 5atnlej1 38852 . . . . 5 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑅𝐴𝑃𝐴) ∧ ¬ 𝐶 (𝑅 𝑃)) → 𝐶𝑅)
277, 12, 8, 23, 25, 26syl131anc 1381 . . . 4 (𝜑𝐶𝑅)
282, 9, 5hlatexch1 38868 . . . 4 ((𝐾 ∈ HL ∧ (𝐶𝐴𝑈𝐴𝑅𝐴) ∧ 𝐶𝑅) → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
297, 12, 22, 8, 27, 28syl131anc 1381 . . 3 (𝜑 → (𝐶 (𝑅 𝑈) → 𝑈 (𝑅 𝐶)))
3021, 29mpd 15 . 2 (𝜑𝑈 (𝑅 𝐶))
313, 9, 5dalempjqeb 39118 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
323, 5dalemreb 39114 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
331, 2, 9latlej2 18441 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ((𝑃 𝑄) 𝑅))
344, 31, 32, 33syl3anc 1369 . . . . 5 (𝜑𝑅 ((𝑃 𝑄) 𝑅))
3534, 11breqtrrdi 5190 . . . 4 (𝜑𝑅 𝑌)
361, 2, 9latjlej1 18445 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾))) → (𝑅 𝑌 → (𝑅 𝐶) (𝑌 𝐶)))
374, 32, 16, 17, 36syl13anc 1370 . . . 4 (𝜑 → (𝑅 𝑌 → (𝑅 𝐶) (𝑌 𝐶)))
3835, 37mpd 15 . . 3 (𝜑 → (𝑅 𝐶) (𝑌 𝐶))
3938, 15breqtrrdi 5190 . 2 (𝜑 → (𝑅 𝐶) 𝑊)
401, 2, 4, 6, 14, 20, 30, 39lattrd 18438 1 (𝜑𝑈 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937   class class class wbr 5148  cfv 6548  (class class class)co 7420  Basecbs 17180  lecple 17240  joincjn 18303  Latclat 18423  Atomscatm 38735  HLchlt 38822  LPlanesclpl 38965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-lplanes 38972
This theorem is referenced by:  dalem6  39141  dalem8  39143
  Copyright terms: Public domain W3C validator
OSZAR »