MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgredgge2 Structured version   Visualization version   GIF version

Theorem lfgredgge2 28957
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
lfuhgrnloopv.i 𝐼 = (iEdg‘𝐺)
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfgredgge2 ((𝐼:𝐴𝐸𝑋𝐴) → 2 ≤ (♯‘(𝐼𝑋)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)   𝑋(𝑥)

Proof of Theorem lfgredgge2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . . 5 𝐴 = 𝐴
2 lfuhgrnloopv.e . . . . 5 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
31, 2feq23i 6721 . . . 4 (𝐼:𝐴𝐸𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
43biimpi 215 . . 3 (𝐼:𝐴𝐸𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
54ffvelcdmda 7099 . 2 ((𝐼:𝐴𝐸𝑋𝐴) → (𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
6 fveq2 6902 . . . . 5 (𝑦 = (𝐼𝑋) → (♯‘𝑦) = (♯‘(𝐼𝑋)))
76breq2d 5164 . . . 4 (𝑦 = (𝐼𝑋) → (2 ≤ (♯‘𝑦) ↔ 2 ≤ (♯‘(𝐼𝑋))))
8 fveq2 6902 . . . . . 6 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
98breq2d 5164 . . . . 5 (𝑥 = 𝑦 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝑦)))
109cbvrabv 3441 . . . 4 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑦 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑦)}
117, 10elrab2 3687 . . 3 ((𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((𝐼𝑋) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼𝑋))))
1211simprbi 495 . 2 ((𝐼𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 2 ≤ (♯‘(𝐼𝑋)))
135, 12syl 17 1 ((𝐼:𝐴𝐸𝑋𝐴) → 2 ≤ (♯‘(𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3430  𝒫 cpw 4606   class class class wbr 5152  dom cdm 5682  wf 6549  cfv 6553  cle 11287  2c2 12305  chash 14329  iEdgciedg 28830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561
This theorem is referenced by:  lfgrnloop  28958
  Copyright terms: Public domain W3C validator
OSZAR »