![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lfgredgge2 | Structured version Visualization version GIF version |
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
Ref | Expression |
---|---|
lfgredgge2 | ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
2 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
3 | 1, 2 | feq23i 6721 | . . . 4 ⊢ (𝐼:𝐴⟶𝐸 ↔ 𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
4 | 3 | biimpi 215 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → 𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
5 | 4 | ffvelcdmda 7099 | . 2 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → (𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
6 | fveq2 6902 | . . . . 5 ⊢ (𝑦 = (𝐼‘𝑋) → (♯‘𝑦) = (♯‘(𝐼‘𝑋))) | |
7 | 6 | breq2d 5164 | . . . 4 ⊢ (𝑦 = (𝐼‘𝑋) → (2 ≤ (♯‘𝑦) ↔ 2 ≤ (♯‘(𝐼‘𝑋)))) |
8 | fveq2 6902 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦)) | |
9 | 8 | breq2d 5164 | . . . . 5 ⊢ (𝑥 = 𝑦 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝑦))) |
10 | 9 | cbvrabv 3441 | . . . 4 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑦 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑦)} |
11 | 7, 10 | elrab2 3687 | . . 3 ⊢ ((𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ((𝐼‘𝑋) ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘(𝐼‘𝑋)))) |
12 | 11 | simprbi 495 | . 2 ⊢ ((𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → 2 ≤ (♯‘(𝐼‘𝑋))) |
13 | 5, 12 | syl 17 | 1 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2 ≤ (♯‘(𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3430 𝒫 cpw 4606 class class class wbr 5152 dom cdm 5682 ⟶wf 6549 ‘cfv 6553 ≤ cle 11287 2c2 12305 ♯chash 14329 iEdgciedg 28830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 |
This theorem is referenced by: lfgrnloop 28958 |
Copyright terms: Public domain | W3C validator |