![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limcrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
limcrcl | ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limc 25808 | . . 3 ⊢ limℂ = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦 ∣ [(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) | |
2 | 1 | elmpocl 7662 | . 2 ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ)) |
3 | cnex 11220 | . . . . 5 ⊢ ℂ ∈ V | |
4 | 3, 3 | elpm2 8893 | . . . 4 ⊢ (𝐹 ∈ (ℂ ↑pm ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ)) |
5 | 4 | anbi1i 623 | . . 3 ⊢ ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ)) |
6 | df-3an 1087 | . . 3 ⊢ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ) ↔ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ) ∧ 𝐵 ∈ ℂ)) | |
7 | 5, 6 | bitr4i 278 | . 2 ⊢ ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐵 ∈ ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
8 | 2, 7 | sylib 217 | 1 ⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 {cab 2705 [wsbc 3776 ∪ cun 3945 ⊆ wss 3947 ifcif 4529 {csn 4629 ↦ cmpt 5231 dom cdm 5678 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ↑pm cpm 8846 ℂcc 11137 ↾t crest 17402 TopOpenctopn 17403 ℂfldccnfld 21279 CnP ccnp 23142 limℂ climc 25804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-pm 8848 df-limc 25808 |
This theorem is referenced by: limccl 25817 limcdif 25818 limcresi 25827 limcres 25828 limccnp 25833 limccnp2 25834 limcco 25835 limcun 25837 mullimc 45004 limccog 45008 mullimcf 45011 limcperiod 45016 limcmptdm 45023 neglimc 45035 addlimc 45036 0ellimcdiv 45037 reclimc 45041 |
Copyright terms: Public domain | W3C validator |