![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmghm | Structured version Visualization version GIF version |
Description: A homomorphism of left modules is a homomorphism of groups. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmghm | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
2 | eqid 2728 | . . 3 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
3 | 1, 2 | lmhmlem 20914 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆)))) |
4 | 3 | simprld 771 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Scalarcsca 17236 GrpHom cghm 19167 LModclmod 20743 LMHom clmhm 20904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-lmhm 20907 |
This theorem is referenced by: lmhmf 20919 islmhm2 20923 lmhmco 20928 lmhmplusg 20929 lmhmvsca 20930 lmhmf1o 20931 lmhmima 20932 lmhmpreima 20933 reslmhm 20937 reslmhm2 20938 reslmhm2b 20939 lmhmeql 20940 lmimgim 20950 ip0l 21568 ipdir 21571 islindf5 21773 isnmhm2 24682 nmoleub2lem 25054 nmoleub2lem2 25056 nmhmcn 25060 lmhmghmd 32770 lmhmqusker 33140 dimkerim 33325 kercvrlsm 42507 pwssplit4 42513 mendring 42616 |
Copyright terms: Public domain | W3C validator |