![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhmrcl1 | Structured version Visualization version GIF version |
Description: Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
mhmrcl1 | ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mhm 18745 | . 2 ⊢ MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) | |
2 | 1 | elmpocl1 7667 | 1 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3057 {crab 3428 ‘cfv 6551 (class class class)co 7424 ↑m cmap 8849 Basecbs 17185 +gcplusg 17238 0gc0g 17426 Mndcmnd 18699 MndHom cmhm 18743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-xp 5686 df-dm 5690 df-iota 6503 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-mhm 18745 |
This theorem is referenced by: mhmf1o 18758 resmhm2 18778 resmhm2b 18779 mhmco 18780 mhmeql 18783 pwsco2mhm 18790 gsumwmhm 18802 mhmmulg 19075 mhmvlin 22317 mhmimasplusg 32776 mhmhmeotmd 33533 mhmcompl 41784 |
Copyright terms: Public domain | W3C validator |