![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 18694 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mgmcl 18596 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1161 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 +gcplusg 17226 Mgmcmgm 18591 Mndcmnd 18687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5300 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 df-mgm 18593 df-sgrp 18672 df-mnd 18688 |
This theorem is referenced by: mnd4g 18701 mndpropd 18712 issubmnd 18714 prdsplusgcl 18718 imasmnd 18725 xpsmnd0 18728 idmhm 18745 mhmf1o 18746 issubmd 18751 0mhm 18764 mhmco 18768 mhmeql 18771 submacs 18772 mndind 18773 prdspjmhm 18774 pwsdiagmhm 18776 pwsco1mhm 18777 pwsco2mhm 18778 gsumwmhm 18790 grpcl 18891 mhmmnd 19013 mulgnn0cl 19038 cntzsubm 19282 oppgmnd 19301 lsmssv 19591 frgp0 19708 frgpadd 19711 mulgnn0di 19773 mulgmhm 19775 gsumval3eu 19852 gsumval3 19855 gsumzcl2 19858 gsumzaddlem 19869 gsumzmhm 19885 gsummptfzcl 19917 srgcl 20126 srgacl 20138 srgbinomlem 20163 srgbinom 20164 ringcl 20183 ringpropd 20217 c0mhm 20392 mndvcl 22286 mhmvlin 22292 mat2pmatghm 22625 pm2mpghm 22711 cpmadugsumlemF 22771 tsmsadd 24044 cmn246135 32747 cmn145236 32748 omndadd2d 32782 omndadd2rd 32783 slmdacl 32910 slmdvacl 32913 gsumncl 34166 primrootsunit1 41561 aks6d1c1 41581 aks6d1c5lem0 41600 aks6d1c5lem3 41602 aks6d1c5lem2 41603 aks6d1c5 41604 aks6d1c6lem1 41636 ofaddmndmap 47401 lincsum 47491 mndtccatid 48093 |
Copyright terms: Public domain | W3C validator |