Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem1 41642
Description: Lemma for claim 6, deduce exact degree of the polynomial. (Contributed by metakunt, 7-May-2025.)
Hypotheses
Ref Expression
aks6d1c6.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6.2 𝑃 = (chr‘𝐾)
aks6d1c6.3 (𝜑𝐾 ∈ Field)
aks6d1c6.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6.7 (𝜑𝑃𝑁)
aks6d1c6.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6.9 (𝜑𝐴 < 𝑃)
aks6d1c6.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c6.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem1.1 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
Assertion
Ref Expression
aks6d1c6lem1 (𝜑 → (( deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑡,𝐴,𝑖   𝑔,𝐾,𝑖   𝑡,𝐾   𝑈,𝑔,𝑖   𝑡,𝑈   𝜑,𝑔,𝑖   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐴(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑃(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑅(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑈(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐸(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐺(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐾(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑀(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑁(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem1
StepHypRef Expression
1 aks6d1c6.10 . . . . 5 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
21a1i 11 . . . 4 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
32fveq1d 6899 . . 3 (𝜑 → (𝐺𝑈) = ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈))
43fveq2d 6901 . 2 (𝜑 → (( deg1𝐾)‘(𝐺𝑈)) = (( deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)))
5 eqidd 2729 . . . . 5 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
6 simplr 768 . . . . . . . . 9 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝑈)
76fveq1d 6899 . . . . . . . 8 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝑈𝑖))
87oveq1d 7435 . . . . . . 7 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))
98mpteq2dva 5248 . . . . . 6 ((𝜑𝑔 = 𝑈) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
109oveq2d 7436 . . . . 5 ((𝜑𝑔 = 𝑈) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem1.1 . . . . 5 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
12 ovexd 7455 . . . . 5 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
135, 10, 11, 12fvmptd 7012 . . . 4 (𝜑 → ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
1413fveq2d 6901 . . 3 (𝜑 → (( deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = (( deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
15 aks6d1c6.3 . . . . . . 7 (𝜑𝐾 ∈ Field)
16 fldidom 21258 . . . . . . 7 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
1715, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ IDomn)
18 fzfid 13971 . . . . . 6 (𝜑 → (0...𝐴) ∈ Fin)
19 eqid 2728 . . . . . . . . . 10 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
20 eqid 2728 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
2119, 20mgpbas 20080 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
22 eqid 2728 . . . . . . . . 9 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
2315fldcrngd 20637 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
24 crngring 20185 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
26 eqid 2728 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1𝐾)
2726ply1ring 22166 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (Poly1𝐾) ∈ Ring)
2825, 27syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝐾) ∈ Ring)
2919ringmgp 20179 . . . . . . . . . . 11 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3028, 29syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
32 nn0ex 12509 . . . . . . . . . . . . . 14 0 ∈ V
3332a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
34 ovexd 7455 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) ∈ V)
3533, 34elmapd 8859 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∈ (ℕ0m (0...𝐴)) ↔ 𝑈:(0...𝐴)⟶ℕ0))
3611, 35mpbid 231 . . . . . . . . . . 11 (𝜑𝑈:(0...𝐴)⟶ℕ0)
3736adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑈:(0...𝐴)⟶ℕ0)
38 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑖 ∈ (0...𝐴))
3937, 38ffvelcdmd 7095 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑈𝑖) ∈ ℕ0)
40 2fveq3 6902 . . . . . . . . . . . 12 (𝑡 = 𝑖 → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))
4140oveq2d 7436 . . . . . . . . . . 11 (𝑡 = 𝑖 → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))
4241eleq1d 2814 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾))))
43 ringmnd 20183 . . . . . . . . . . . . . . 15 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ Mnd)
4428, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Mnd)
4544adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
4625adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
47 eqid 2728 . . . . . . . . . . . . . . 15 (var1𝐾) = (var1𝐾)
4847, 26, 20vr1cl 22136 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
4946, 48syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
50 eqid 2728 . . . . . . . . . . . . . . . . . . 19 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
5150zrhrhm 21437 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
5225, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
53 zringbas 21379 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
54 eqid 2728 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
5553, 54rhmf 20424 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5652, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5756adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
58 elfzelz 13534 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0...𝐴) → 𝑡 ∈ ℤ)
5958adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ ℤ)
6057, 59ffvelcdmd 7095 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾))
61 eqid 2728 . . . . . . . . . . . . . . 15 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
6226, 61, 54, 20ply1sclcl 22205 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
6346, 60, 62syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
64 eqid 2728 . . . . . . . . . . . . . 14 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
6520, 64mndcl 18702 . . . . . . . . . . . . 13 (((Poly1𝐾) ∈ Mnd ∧ (var1𝐾) ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾))) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6645, 49, 63, 65syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6766ralrimiva 3143 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6942, 68, 38rspcdva 3610 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
7021, 22, 31, 39, 69mulgnn0cld 19050 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
7126ply1idom 26073 . . . . . . . . . . 11 (𝐾 ∈ IDomn → (Poly1𝐾) ∈ IDomn)
7217, 71syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ IDomn)
7372adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ IDomn)
7441neeq1d 2997 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾))))
75 eqid 2728 . . . . . . . . . . . . . . . 16 ( deg1𝐾) = ( deg1𝐾)
7675, 26, 20deg1xrcl 26031 . . . . . . . . . . . . . . . . . . 19 (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)) → (( deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
7763, 76syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
78 0xr 11292 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
7978a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 ∈ ℝ*)
80 1xr 11304 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℝ*)
8275, 26, 54, 61deg1sclle 26061 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → (( deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
8346, 60, 82syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
84 0lt1 11767 . . . . . . . . . . . . . . . . . . 19 0 < 1
8584a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 < 1)
8677, 79, 81, 83, 85xrlelttrd 13172 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < 1)
8721, 22mulg1 19036 . . . . . . . . . . . . . . . . . . . . 21 ((var1𝐾) ∈ (Base‘(Poly1𝐾)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8849, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0...𝐴)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8988eqcomd 2734 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) = (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))
9089fveq2d 6901 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘(var1𝐾)) = (( deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
91 isfld 20635 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
92 drngnzr 20644 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing) → 𝐾 ∈ NzRing)
9491, 93sylbi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ Field → 𝐾 ∈ NzRing)
9515, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ NzRing)
9695adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ NzRing)
97 1nn0 12519 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
9897a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℕ0)
9975, 26, 47, 19, 22deg1pw 26069 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ NzRing ∧ 1 ∈ ℕ0) → (( deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10096, 98, 99syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10190, 100eqtr2d 2769 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → 1 = (( deg1𝐾)‘(var1𝐾)))
10286, 101breqtrd 5174 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < (( deg1𝐾)‘(var1𝐾)))
10326, 75, 46, 20, 64, 49, 63, 102deg1add 26052 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = (( deg1𝐾)‘(var1𝐾)))
10490, 100eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘(var1𝐾)) = 1)
105103, 104eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = 1)
106105, 98eqeltrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0)
107 eqid 2728 . . . . . . . . . . . . . . 15 (0g‘(Poly1𝐾)) = (0g‘(Poly1𝐾))
10875, 26, 107, 20deg1nn0clb 26039 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾))) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ (( deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
10946, 66, 108syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ (( deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
110106, 109mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
111110ralrimiva 3143 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
112111adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
11374, 112, 38rspcdva 3610 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾)))
11473, 69, 113, 39, 22idomnnzpownz 41603 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾)))
11570, 114jca 511 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
116115ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑖 ∈ (0...𝐴)(((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
11717, 18, 116deg1gprod 41612 . . . . 5 (𝜑 → ((( deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)(( deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) ∧ 0 ≤ (( deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))))
118117simpld 494 . . . 4 (𝜑 → (( deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)(( deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)))
119 eqidd 2729 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
120 simpr 484 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → 𝑖 = 𝑡)
121120fveq2d 6901 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → (𝑈𝑖) = (𝑈𝑡))
122120fveq2d 6901 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((ℤRHom‘𝐾)‘𝑖) = ((ℤRHom‘𝐾)‘𝑡))
123122fveq2d 6901 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))
124123oveq2d 7436 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))
125121, 124oveq12d 7438 . . . . . . . 8 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
126 simpr 484 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ (0...𝐴))
127 ovexd 7455 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ V)
128119, 125, 126, 127fvmptd 7012 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
129128fveq2d 6901 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = (( deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
13017adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ IDomn)
13136ffvelcdmda 7094 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℕ0)
132130, 66, 110, 131, 22, 75deg1pow 41613 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · (( deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
133105oveq2d 7436 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · (( deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · 1))
134131nn0cnd 12565 . . . . . . . . 9 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℂ)
135134mulridd 11262 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · 1) = (𝑈𝑡))
136133, 135eqtrd 2768 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · (( deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
137132, 136eqtrd 2768 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
138129, 137eqtrd 2768 . . . . 5 ((𝜑𝑡 ∈ (0...𝐴)) → (( deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = (𝑈𝑡))
139138sumeq2dv 15682 . . . 4 (𝜑 → Σ𝑡 ∈ (0...𝐴)(( deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
140118, 139eqtrd 2768 . . 3 (𝜑 → (( deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
14114, 140eqtrd 2768 . 2 (𝜑 → (( deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
1424, 141eqtrd 2768 1 (𝜑 → (( deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wral 3058  {crab 3429  Vcvv 3471   class class class wbr 5148  {copab 5210  cmpt 5231   × cxp 5676  cima 5681  wf 6544  cfv 6548  (class class class)co 7420  cmpo 7422  m cmap 8845  0cc0 11139  1c1 11140   · cmul 11144  *cxr 11278   < clt 11279  cle 11280  cmin 11475   / cdiv 11902  cn 12243  0cn0 12503  cz 12589  ...cfz 13517  cexp 14059  chash 14322  Σcsu 15665  cdvds 16231   gcd cgcd 16469  cprime 16642  Basecbs 17180  +gcplusg 17233  0gc0g 17421   Σg cgsu 17422  Mndcmnd 18694  .gcmg 19023  mulGrpcmgp 20074  Ringcrg 20173  CRingccrg 20174   RingHom crh 20408   RingIso crs 20409  NzRingcnzr 20451  DivRingcdr 20624  Fieldcfield 20625  IDomncidom 21228  ringczring 21372  ℤRHomczrh 21425  chrcchr 21427  ℤ/nczn 21428  algSccascl 21786  var1cv1 22095  Poly1cpl1 22096  eval1ce1 22233   deg1 cdg1 26000   PrimRoots cprimroots 41562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-addf 11218  ax-mulf 11219
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-ofr 7686  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-sum 15666  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-0g 17423  df-gsum 17424  df-prds 17429  df-pws 17431  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mhm 18740  df-submnd 18741  df-grp 18893  df-minusg 18894  df-sbg 18895  df-mulg 19024  df-subg 19078  df-ghm 19168  df-cntz 19268  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-cring 20176  df-oppr 20273  df-dvdsr 20296  df-unit 20297  df-invr 20327  df-rhm 20411  df-nzr 20452  df-subrng 20483  df-subrg 20508  df-drng 20626  df-field 20627  df-lmod 20745  df-lss 20816  df-rlreg 21230  df-domn 21231  df-idom 21232  df-cnfld 21280  df-zring 21373  df-zrh 21429  df-ascl 21789  df-psr 21842  df-mvr 21843  df-mpl 21844  df-opsr 21846  df-psr1 22099  df-vr1 22100  df-ply1 22101  df-coe1 22102  df-mdeg 26001  df-deg1 26002
This theorem is referenced by:  aks6d1c6lem3  41644
  Copyright terms: Public domain W3C validator
OSZAR »