![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > negslem1 | Structured version Visualization version GIF version |
Description: An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024.) |
Ref | Expression |
---|---|
negslem1 | ⊢ (𝐴 = 𝐵 → ((𝐹 ↾ 𝐴) Isom 𝑅, ◡𝑅(𝐴, 𝐴) ↔ (𝐹 ↾ 𝐵) Isom 𝑅, ◡𝑅(𝐵, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | 1, 1 | resisoeq45d 42853 | 1 ⊢ (𝐴 = 𝐵 → ((𝐹 ↾ 𝐴) Isom 𝑅, ◡𝑅(𝐴, 𝐴) ↔ (𝐹 ↾ 𝐵) Isom 𝑅, ◡𝑅(𝐵, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ◡ccnv 5679 ↾ cres 5682 Isom wiso 6552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |