Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resisoeq45d Structured version   Visualization version   GIF version

Theorem resisoeq45d 42850
Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.)
Hypotheses
Ref Expression
resisoeq45.4 (𝜑𝐴 = 𝐶)
resisoeq45.5 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
resisoeq45d (𝜑 → ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)))

Proof of Theorem resisoeq45d
StepHypRef Expression
1 resisoeq45.4 . . 3 (𝜑𝐴 = 𝐶)
21reseq2d 5985 . 2 (𝜑 → (𝐹𝐴) = (𝐹𝐶))
3 resisoeq45.5 . 2 (𝜑𝐵 = 𝐷)
42, 1, 3isoeq145d 42849 1 (𝜑 → ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  cres 5680   Isom wiso 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557
This theorem is referenced by:  negslem1  42851
  Copyright terms: Public domain W3C validator
OSZAR »