MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzrnz Structured version   Visualization version   GIF version

Theorem nzrnz 20447
Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
isnzr.o 1 = (1r𝑅)
isnzr.z 0 = (0g𝑅)
Assertion
Ref Expression
nzrnz (𝑅 ∈ NzRing → 10 )

Proof of Theorem nzrnz
StepHypRef Expression
1 isnzr.o . . 3 1 = (1r𝑅)
2 isnzr.z . . 3 0 = (0g𝑅)
31, 2isnzr 20446 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 10 ))
43simprbi 496 1 (𝑅 ∈ NzRing → 10 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wne 2936  cfv 6542  0gc0g 17414  1rcur 20114  Ringcrg 20166  NzRingcnzr 20444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-nzr 20445
This theorem is referenced by:  nzrunit  20454  nrhmzr  20467  lringnz  20473  subrgnzr  20526  fidomndrng  21254  uvcf1  21719  lindfind2  21745  nm1  24577  deg1pw  26049  ply1nz  26050  ply1nzb  26051  mon1pid  26082  lgsqrlem4  27275  unitnz  32941  rrgnz  32945  fracfld  32988  drngidl  33143  drngidlhash  33144  drnglidl1ne0  33182  drng0mxidl  33183  qsdrngi  33200  ply1moneq  33254  ply1annnr  33368  algextdeglem4  33382  zrhnm  33564  idomnnzpownz  41597  idomnnzgmulnz  41598  deg1gprod  41606  deg1pow  41607  uvcn0  41766  deg1mhm  42622
  Copyright terms: Public domain W3C validator
OSZAR »