Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngidlhash Structured version   Visualization version   GIF version

Theorem drngidlhash 33150
Description: A ring is a division ring if and only if it admits exactly two ideals. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypothesis
Ref Expression
drngidlhash.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngidlhash (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))

Proof of Theorem drngidlhash
StepHypRef Expression
1 eqid 2728 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2728 . . . . . 6 (0g𝑅) = (0g𝑅)
3 drngidlhash.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
41, 2, 3drngnidl 21137 . . . . 5 (𝑅 ∈ DivRing → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
54fveq2d 6901 . . . 4 (𝑅 ∈ DivRing → (♯‘𝑈) = (♯‘{{(0g𝑅)}, (Base‘𝑅)}))
6 drngnzr 20643 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
7 nzrring 20454 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
8 eqid 2728 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
91, 8ringidcl 20201 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
107, 9syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Base‘𝑅))
118, 2nzrnz 20453 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ≠ (0g𝑅))
12 nelsn 4669 . . . . . . . . 9 ((1r𝑅) ≠ (0g𝑅) → ¬ (1r𝑅) ∈ {(0g𝑅)})
1311, 12syl 17 . . . . . . . 8 (𝑅 ∈ NzRing → ¬ (1r𝑅) ∈ {(0g𝑅)})
14 nelne1 3036 . . . . . . . 8 (((1r𝑅) ∈ (Base‘𝑅) ∧ ¬ (1r𝑅) ∈ {(0g𝑅)}) → (Base‘𝑅) ≠ {(0g𝑅)})
1510, 13, 14syl2anc 583 . . . . . . 7 (𝑅 ∈ NzRing → (Base‘𝑅) ≠ {(0g𝑅)})
1615necomd 2993 . . . . . 6 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
176, 16syl 17 . . . . 5 (𝑅 ∈ DivRing → {(0g𝑅)} ≠ (Base‘𝑅))
18 snex 5433 . . . . . 6 {(0g𝑅)} ∈ V
19 fvex 6910 . . . . . 6 (Base‘𝑅) ∈ V
20 hashprg 14386 . . . . . 6 (({(0g𝑅)} ∈ V ∧ (Base‘𝑅) ∈ V) → ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2))
2118, 19, 20mp2an 691 . . . . 5 ({(0g𝑅)} ≠ (Base‘𝑅) ↔ (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
2217, 21sylib 217 . . . 4 (𝑅 ∈ DivRing → (♯‘{{(0g𝑅)}, (Base‘𝑅)}) = 2)
235, 22eqtrd 2768 . . 3 (𝑅 ∈ DivRing → (♯‘𝑈) = 2)
2423adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑅 ∈ DivRing) → (♯‘𝑈) = 2)
25 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ Ring)
26 simplr 768 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 2)
27 2re 12316 . . . . . . . . . . 11 2 ∈ ℝ
2826, 27eqeltrdi 2837 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ∈ ℝ)
29 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑅 ∈ Ring)
30 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
3130fveq2d 6901 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
32 fvex 6910 . . . . . . . . . . . . . . . . . 18 (0g𝑅) ∈ V
33 hashsng 14360 . . . . . . . . . . . . . . . . . 18 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . 17 (♯‘{(0g𝑅)}) = 1
3531, 34eqtr3di 2783 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘(Base‘𝑅)) = 1)
361, 20ringidl 33136 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → (LIdeal‘𝑅) = {{(0g𝑅)}})
3729, 35, 36syl2anc 583 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (LIdeal‘𝑅) = {{(0g𝑅)}})
383, 37eqtrid 2780 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}})
3938fveq2d 6901 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = (♯‘{{(0g𝑅)}}))
40 hashsng 14360 . . . . . . . . . . . . . 14 ({(0g𝑅)} ∈ V → (♯‘{{(0g𝑅)}}) = 1)
4118, 40ax-mp 5 . . . . . . . . . . . . 13 (♯‘{{(0g𝑅)}}) = 1
4239, 41eqtrdi 2784 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
4342adantlr 714 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) = 1)
44 1lt2 12413 . . . . . . . . . . 11 1 < 2
4543, 44eqbrtrdi 5187 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) < 2)
4628, 45ltned 11380 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘𝑈) ≠ 2)
4746neneqd 2942 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ (♯‘𝑈) = 2)
4826, 47pm2.65da 816 . . . . . . 7 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → ¬ {(0g𝑅)} = (Base‘𝑅))
4948neqned 2944 . . . . . 6 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ≠ (Base‘𝑅))
501, 2, 801eq0ring 20466 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → (Base‘𝑅) = {(0g𝑅)})
5150eqcomd 2734 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (0g𝑅) = (1r𝑅)) → {(0g𝑅)} = (Base‘𝑅))
5251ex 412 . . . . . . 7 (𝑅 ∈ Ring → ((0g𝑅) = (1r𝑅) → {(0g𝑅)} = (Base‘𝑅)))
5352necon3d 2958 . . . . . 6 (𝑅 ∈ Ring → ({(0g𝑅)} ≠ (Base‘𝑅) → (0g𝑅) ≠ (1r𝑅)))
5425, 49, 53sylc 65 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (0g𝑅) ≠ (1r𝑅))
5554necomd 2993 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (1r𝑅) ≠ (0g𝑅))
568, 2isnzr 20452 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5725, 55, 56sylanbrc 582 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ NzRing)
583fvexi 6911 . . . . 5 𝑈 ∈ V
5958a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 ∈ V)
60 simpr 484 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (♯‘𝑈) = 2)
613, 2lidl0 21125 . . . . 5 (𝑅 ∈ Ring → {(0g𝑅)} ∈ 𝑈)
6225, 61syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → {(0g𝑅)} ∈ 𝑈)
633, 1lidl1 21128 . . . . 5 (𝑅 ∈ Ring → (Base‘𝑅) ∈ 𝑈)
6425, 63syl 17 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → (Base‘𝑅) ∈ 𝑈)
65 hash2prd 14468 . . . . 5 ((𝑈 ∈ V ∧ (♯‘𝑈) = 2) → (({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6665imp 406 . . . 4 (((𝑈 ∈ V ∧ (♯‘𝑈) = 2) ∧ ({(0g𝑅)} ∈ 𝑈 ∧ (Base‘𝑅) ∈ 𝑈 ∧ {(0g𝑅)} ≠ (Base‘𝑅))) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
6759, 60, 62, 64, 49, 66syl23anc 1375 . . 3 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑈 = {{(0g𝑅)}, (Base‘𝑅)})
681, 2, 3drngidl 33149 . . . 4 (𝑅 ∈ NzRing → (𝑅 ∈ DivRing ↔ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}))
6968biimpar 477 . . 3 ((𝑅 ∈ NzRing ∧ 𝑈 = {{(0g𝑅)}, (Base‘𝑅)}) → 𝑅 ∈ DivRing)
7057, 67, 69syl2anc 583 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝑈) = 2) → 𝑅 ∈ DivRing)
7124, 70impbida 800 1 (𝑅 ∈ Ring → (𝑅 ∈ DivRing ↔ (♯‘𝑈) = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  Vcvv 3471  {csn 4629  {cpr 4631  cfv 6548  cr 11137  1c1 11139   < clt 11278  2c2 12297  chash 14321  Basecbs 17179  0gc0g 17420  1rcur 20120  Ringcrg 20172  NzRingcnzr 20450  DivRingcdr 20623  LIdealclidl 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8231  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-oadd 8490  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-hash 14322  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-ip 17250  df-0g 17422  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18892  df-minusg 18893  df-sbg 18894  df-subg 19077  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-ring 20174  df-oppr 20272  df-dvdsr 20295  df-unit 20296  df-invr 20326  df-nzr 20451  df-subrg 20507  df-drng 20625  df-lmod 20744  df-lss 20815  df-lsp 20855  df-sra 21057  df-rgmod 21058  df-lidl 21103  df-rsp 21104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »