![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version |
Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
Ref | Expression |
---|---|
nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4646 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2962 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2099 ≠ wne 2937 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-sn 4630 |
This theorem is referenced by: frd 5637 fvn0fvelrn 6928 fvunsn 7188 nnoddn2prmb 16782 lbsextlem4 21049 cnfldfun 21293 cnfldfunOLD 21306 obslbs 21664 logbgcd1irr 26739 upgrres1 29139 cycpmco2 32867 lindssn 33106 drngidlhash 33163 drnglidl1ne0 33201 drng0mxidl 33202 ig1pmindeg 33272 irngnminplynz 33382 algextdeglem4 33388 submateqlem1 33408 submateqlem2 33409 qqhval2 33583 derangsn 34780 ricdrng1 41764 prjspersym 42031 prjspreln0 42033 prjspvs 42034 prjspnvs 42044 pr2eldif1 42984 pr2eldif2 42985 clsk3nimkb 43470 clsk1indlem1 43475 disjf1o 44564 cnrefiisplem 45217 fperdvper 45307 dvnmul 45331 wallispi 45458 etransc 45671 gsumge0cl 45759 meadjiunlem 45853 hspmbllem2 46015 |
Copyright terms: Public domain | W3C validator |