![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2eldif2 | Structured version Visualization version GIF version |
Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
Ref | Expression |
---|---|
pr2eldif2 | ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pren2 42977 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | |
2 | prid2g 4761 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐴, 𝐵}) | |
3 | 2 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ {𝐴, 𝐵}) |
4 | necom 2990 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
5 | nelsn 4664 | . . . . 5 ⊢ (𝐵 ≠ 𝐴 → ¬ 𝐵 ∈ {𝐴}) | |
6 | 4, 5 | sylbi 216 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
7 | 6 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → ¬ 𝐵 ∈ {𝐴}) |
8 | 3, 7 | eldifd 3956 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) |
9 | 1, 8 | sylbi 216 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1085 ∈ wcel 2099 ≠ wne 2936 Vcvv 3470 ∖ cdif 3942 {csn 4624 {cpr 4626 class class class wbr 5142 2oc2o 8474 ≈ cen 8954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-1o 8480 df-2o 8481 df-en 8958 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |