![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5163 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 class class class wbr 5153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 |
This theorem is referenced by: eqbrtrrdi 5193 domunsn 9165 mapdom1 9180 mapdom2 9186 pm54.43 10044 infmap2 10261 inar1 10818 gruina 10861 nn0ledivnn 13141 xltnegi 13249 leexp1a 14194 discr 14257 facwordi 14306 faclbnd3 14309 hashgt12el 14439 hashle2pr 14496 cnpart 15245 geomulcvg 15880 dvds1 16321 ramz2 17026 ramz 17027 gex1 19589 sylow2a 19617 en1top 22978 en2top 22979 hmph0 23790 ptcmplem2 24048 dscmet 24572 dscopn 24573 xrge0tsms2 24842 htpycc 24997 pcohtpylem 25037 pcopt 25040 pcopt2 25041 pcoass 25042 pcorevlem 25044 vitalilem5 25632 dvef 26003 dveq0 26024 dv11cn 26025 deg1lt0 26118 ply1rem 26193 fta1g 26197 plyremlem 26332 aalioulem3 26362 pige3ALT 26547 relogrn 26588 logneg 26615 cxpaddlelem 26779 mule1 27176 ppiub 27233 dchrabs2 27291 bposlem1 27313 zabsle1 27325 lgseisen 27408 lgsquadlem2 27410 rpvmasumlem 27516 qabvle 27654 ostth3 27667 precsexlem9 28214 nnsrecgt0d 28322 0reno 28348 colinearalg 28844 eengstr 28914 clwwlknon1le1 30034 eucrct2eupth 30178 nmosetn0 30698 nmoo0 30724 siii 30786 bcsiALT 31112 branmfn 32038 fzo0opth 32707 drngidlhash 33309 m1pmeq 33455 esumrnmpt2 33901 ballotlemrc 34364 pthhashvtx 34955 subfacval3 35017 sconnpi1 35067 fz0n 35553 poimirlem31 37352 itg2addnclem 37372 ftc1anc 37402 safesnsupfidom1o 43084 radcnvrat 43988 infxr 44982 stoweidlem18 45639 stoweidlem55 45676 fourierdlem62 45789 fourierswlem 45851 exple2lt6 47743 fvconstdomi 48227 f1omoALT 48229 indthincALT 48374 |
Copyright terms: Public domain | W3C validator |