![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtrdi | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqbrtrdi.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrdi | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrdi.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtrdi.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5158 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 |
This theorem is referenced by: eqbrtrrdi 5188 domunsn 9152 mapdom1 9167 mapdom2 9173 pm54.43 10025 infmap2 10242 inar1 10799 gruina 10842 nn0ledivnn 13120 xltnegi 13228 leexp1a 14172 discr 14235 facwordi 14281 faclbnd3 14284 hashgt12el 14414 hashle2pr 14471 cnpart 15220 geomulcvg 15855 dvds1 16296 ramz2 16993 ramz 16994 gex1 19546 sylow2a 19574 en1top 22900 en2top 22901 hmph0 23712 ptcmplem2 23970 dscmet 24494 dscopn 24495 xrge0tsms2 24764 htpycc 24919 pcohtpylem 24959 pcopt 24962 pcopt2 24963 pcoass 24964 pcorevlem 24966 vitalilem5 25554 dvef 25925 dveq0 25946 dv11cn 25947 deg1lt0 26040 ply1rem 26113 fta1g 26117 plyremlem 26252 aalioulem3 26282 pige3ALT 26467 relogrn 26508 logneg 26535 cxpaddlelem 26699 mule1 27093 ppiub 27150 dchrabs2 27208 bposlem1 27230 zabsle1 27242 lgseisen 27325 lgsquadlem2 27327 rpvmasumlem 27433 qabvle 27571 ostth3 27584 precsexlem9 28126 nnsrecgt0d 28232 0reno 28238 colinearalg 28734 eengstr 28804 clwwlknon1le1 29924 eucrct2eupth 30068 nmosetn0 30588 nmoo0 30614 siii 30676 bcsiALT 31002 branmfn 31928 drngidlhash 33163 m1pmeq 33261 esumrnmpt2 33687 ballotlemrc 34150 pthhashvtx 34737 subfacval3 34799 sconnpi1 34849 fz0n 35325 poimirlem31 37124 itg2addnclem 37144 ftc1anc 37174 safesnsupfidom1o 42847 radcnvrat 43751 infxr 44749 stoweidlem18 45406 stoweidlem55 45443 fourierdlem62 45556 fourierswlem 45618 exple2lt6 47428 fvconstdomi 47912 f1omoALT 47914 indthincALT 48059 |
Copyright terms: Public domain | W3C validator |