MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrct2eupth Structured version   Visualization version   GIF version

Theorem eucrct2eupth 30075
Description: Removing one edge (𝐼‘(𝐹𝐽)) from a graph 𝐺 with an Eulerian circuit 𝐹, 𝑃 results in a graph 𝑆 with an Eulerian path 𝐻, 𝑄. (Contributed by AV, 17-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eucrct2eupth1.v 𝑉 = (Vtx‘𝐺)
eucrct2eupth1.i 𝐼 = (iEdg‘𝐺)
eucrct2eupth1.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eucrct2eupth1.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrct2eupth1.s (Vtx‘𝑆) = 𝑉
eucrct2eupth.n (𝜑𝑁 = (♯‘𝐹))
eucrct2eupth.j (𝜑𝐽 ∈ (0..^𝑁))
eucrct2eupth.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
eucrct2eupth.k 𝐾 = (𝐽 + 1)
eucrct2eupth.h 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
eucrct2eupth.q 𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
Assertion
Ref Expression
eucrct2eupth (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝑁   𝑥,𝑃   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝑆(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem eucrct2eupth
StepHypRef Expression
1 eucrct2eupth1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eucrct2eupth1.i . . . 4 𝐼 = (iEdg‘𝐺)
3 eucrct2eupth1.d . . . . . 6 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
43adantl 480 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(EulerPaths‘𝐺)𝑃)
5 eucrct2eupth.k . . . . . . . 8 𝐾 = (𝐽 + 1)
65eqcomi 2737 . . . . . . 7 (𝐽 + 1) = 𝐾
76oveq2i 7437 . . . . . 6 (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝐾)
8 oveq1 7433 . . . . . . . . 9 (𝐽 = (𝑁 − 1) → (𝐽 + 1) = ((𝑁 − 1) + 1))
9 eucrct2eupth.j . . . . . . . . . 10 (𝜑𝐽 ∈ (0..^𝑁))
10 elfzo0 13713 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
11 nncn 12258 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
12113ad2ant2 1131 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
1310, 12sylbi 216 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℂ)
14 npcan1 11677 . . . . . . . . . 10 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
159, 13, 143syl 18 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
168, 15sylan9eq 2788 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐽 + 1) = 𝑁)
1716oveq2d 7442 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift (𝐽 + 1)) = (𝐹 cyclShift 𝑁))
18 eucrct2eupth.n . . . . . . . . . 10 (𝜑𝑁 = (♯‘𝐹))
1918oveq2d 7442 . . . . . . . . 9 (𝜑 → (𝐹 cyclShift 𝑁) = (𝐹 cyclShift (♯‘𝐹)))
20 eucrct2eupth1.c . . . . . . . . . . 11 (𝜑𝐹(Circuits‘𝐺)𝑃)
21 crctiswlk 29630 . . . . . . . . . . . 12 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
222wlkf 29448 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹(Circuits‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
2420, 23syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ Word dom 𝐼)
25 cshwn 14787 . . . . . . . . . 10 (𝐹 ∈ Word dom 𝐼 → (𝐹 cyclShift (♯‘𝐹)) = 𝐹)
2624, 25syl 17 . . . . . . . . 9 (𝜑 → (𝐹 cyclShift (♯‘𝐹)) = 𝐹)
2719, 26eqtrd 2768 . . . . . . . 8 (𝜑 → (𝐹 cyclShift 𝑁) = 𝐹)
2827adantl 480 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝑁) = 𝐹)
2917, 28eqtrd 2768 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift (𝐽 + 1)) = 𝐹)
307, 29eqtr3id 2782 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾) = 𝐹)
31 eqid 2728 . . . . . . . . . . . . . 14 (♯‘𝐹) = (♯‘𝐹)
321, 2, 20, 31crctcshlem1 29648 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐹) ∈ ℕ0)
33 fz0sn0fz1 13658 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
3432, 33syl 17 . . . . . . . . . . . 12 (𝜑 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
3534eleq2d 2815 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↔ 𝑥 ∈ ({0} ∪ (1...(♯‘𝐹)))))
36 elun 4149 . . . . . . . . . . 11 (𝑥 ∈ ({0} ∪ (1...(♯‘𝐹))) ↔ (𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹))))
3735, 36bitrdi 286 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↔ (𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹)))))
38 elsni 4649 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {0} → 𝑥 = 0)
39 0le0 12351 . . . . . . . . . . . . . . . 16 0 ≤ 0
4038, 39eqbrtrdi 5191 . . . . . . . . . . . . . . 15 (𝑥 ∈ {0} → 𝑥 ≤ 0)
4140adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {0}) → 𝑥 ≤ 0)
4241iftrued 4540 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {0}) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃‘(𝑥 + 𝑁)))
4318fveq2d 6906 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃𝑁) = (𝑃‘(♯‘𝐹)))
44 crctprop 29626 . . . . . . . . . . . . . . . . . 18 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
45 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
4645eqcomd 2734 . . . . . . . . . . . . . . . . . 18 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
4720, 44, 463syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
4843, 47eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃𝑁) = (𝑃‘0))
4948adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃𝑁) = (𝑃‘0))
50 oveq1 7433 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (𝑥 + 𝑁) = (0 + 𝑁))
519, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
5251addlidd 11453 . . . . . . . . . . . . . . . . 17 (𝜑 → (0 + 𝑁) = 𝑁)
5350, 52sylan9eqr 2790 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → (𝑥 + 𝑁) = 𝑁)
5453fveq2d 6906 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑁))
55 fveq2 6902 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
5655adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (𝑃𝑥) = (𝑃‘0))
5749, 54, 563eqtr4d 2778 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 0) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑥))
5838, 57sylan2 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {0}) → (𝑃‘(𝑥 + 𝑁)) = (𝑃𝑥))
5942, 58eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {0}) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
6059ex 411 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ {0} → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
61 elfznn 13570 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(♯‘𝐹)) → 𝑥 ∈ ℕ)
62 nnnle0 12283 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ → ¬ 𝑥 ≤ 0)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...(♯‘𝐹)) → ¬ 𝑥 ≤ 0)
6463adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → ¬ 𝑥 ≤ 0)
6564iffalsed 4543 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
6661nncnd 12266 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...(♯‘𝐹)) → 𝑥 ∈ ℂ)
6766adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → 𝑥 ∈ ℂ)
6851adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℂ)
6967, 68pncand 11610 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → ((𝑥 + 𝑁) − 𝑁) = 𝑥)
7069fveq2d 6906 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → (𝑃‘((𝑥 + 𝑁) − 𝑁)) = (𝑃𝑥))
7165, 70eqtrd 2768 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
7271ex 411 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (1...(♯‘𝐹)) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7360, 72jaod 857 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ {0} ∨ 𝑥 ∈ (1...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7437, 73sylbid 239 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥)))
7574imp 405 . . . . . . . 8 ((𝜑𝑥 ∈ (0...(♯‘𝐹))) → if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))) = (𝑃𝑥))
7675mpteq2dva 5252 . . . . . . 7 (𝜑 → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
7776adantl 480 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
785oveq2i 7437 . . . . . . . . . 10 (𝑁𝐾) = (𝑁 − (𝐽 + 1))
798oveq2d 7442 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → (𝑁 − (𝐽 + 1)) = (𝑁 − ((𝑁 − 1) + 1)))
8015oveq2d 7442 . . . . . . . . . . . 12 (𝜑 → (𝑁 − ((𝑁 − 1) + 1)) = (𝑁𝑁))
8151subidd 11597 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑁) = 0)
8280, 81eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (𝑁 − ((𝑁 − 1) + 1)) = 0)
8379, 82sylan9eq 2788 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁 − (𝐽 + 1)) = 0)
8478, 83eqtrid 2780 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁𝐾) = 0)
8584breq2d 5164 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ≤ (𝑁𝐾) ↔ 𝑥 ≤ 0))
865oveq2i 7437 . . . . . . . . . 10 (𝑥 + 𝐾) = (𝑥 + (𝐽 + 1))
8786fveq2i 6905 . . . . . . . . 9 (𝑃‘(𝑥 + 𝐾)) = (𝑃‘(𝑥 + (𝐽 + 1)))
888oveq2d 7442 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → (𝑥 + (𝐽 + 1)) = (𝑥 + ((𝑁 − 1) + 1)))
8915oveq2d 7442 . . . . . . . . . . 11 (𝜑 → (𝑥 + ((𝑁 − 1) + 1)) = (𝑥 + 𝑁))
9088, 89sylan9eq 2788 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 + (𝐽 + 1)) = (𝑥 + 𝑁))
9190fveq2d 6906 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘(𝑥 + (𝐽 + 1))) = (𝑃‘(𝑥 + 𝑁)))
9287, 91eqtrid 2780 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘(𝑥 + 𝐾)) = (𝑃‘(𝑥 + 𝑁)))
9386oveq1i 7436 . . . . . . . . . 10 ((𝑥 + 𝐾) − 𝑁) = ((𝑥 + (𝐽 + 1)) − 𝑁)
9493fveq2i 6905 . . . . . . . . 9 (𝑃‘((𝑥 + 𝐾) − 𝑁)) = (𝑃‘((𝑥 + (𝐽 + 1)) − 𝑁))
9588oveq1d 7441 . . . . . . . . . . 11 (𝐽 = (𝑁 − 1) → ((𝑥 + (𝐽 + 1)) − 𝑁) = ((𝑥 + ((𝑁 − 1) + 1)) − 𝑁))
9689oveq1d 7441 . . . . . . . . . . 11 (𝜑 → ((𝑥 + ((𝑁 − 1) + 1)) − 𝑁) = ((𝑥 + 𝑁) − 𝑁))
9795, 96sylan9eq 2788 . . . . . . . . . 10 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 + (𝐽 + 1)) − 𝑁) = ((𝑥 + 𝑁) − 𝑁))
9897fveq2d 6906 . . . . . . . . 9 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + (𝐽 + 1)) − 𝑁)) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
9994, 98eqtrid 2780 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + 𝐾) − 𝑁)) = (𝑃‘((𝑥 + 𝑁) − 𝑁)))
10085, 92, 99ifbieq12d 4560 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))) = if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁))))
101100mpteq2dv 5254 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ 0, (𝑃‘(𝑥 + 𝑁)), (𝑃‘((𝑥 + 𝑁) − 𝑁)))))
10220, 21syl 17 . . . . . . . . 9 (𝜑𝐹(Walks‘𝐺)𝑃)
1031wlkp 29450 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
104 ffn 6727 . . . . . . . . 9 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...(♯‘𝐹)))
105102, 103, 1043syl 18 . . . . . . . 8 (𝜑𝑃 Fn (0...(♯‘𝐹)))
106105adantl 480 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑃 Fn (0...(♯‘𝐹)))
107 dffn5 6962 . . . . . . 7 (𝑃 Fn (0...(♯‘𝐹)) ↔ 𝑃 = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
108106, 107sylib 217 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑃 = (𝑥 ∈ (0...(♯‘𝐹)) ↦ (𝑃𝑥)))
10977, 101, 1083eqtr4d 2778 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = 𝑃)
1104, 30, 1093brtr4d 5184 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
11120adantl 480 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(Circuits‘𝐺)𝑃)
112111, 30, 1093brtr4d 5184 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
113 eucrct2eupth1.s . . . 4 (Vtx‘𝑆) = 𝑉
114 elfzolt3 13682 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → 0 < 𝑁)
1159, 114syl 17 . . . . . 6 (𝜑 → 0 < 𝑁)
116 elfzoelz 13672 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
1179, 116syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
118117peano2zd 12707 . . . . . . . . 9 (𝜑 → (𝐽 + 1) ∈ ℤ)
1195, 118eqeltrid 2833 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
120 cshwlen 14789 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐾 ∈ ℤ) → (♯‘(𝐹 cyclShift 𝐾)) = (♯‘𝐹))
121120eqcomd 2734 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝐾 ∈ ℤ) → (♯‘𝐹) = (♯‘(𝐹 cyclShift 𝐾)))
12224, 119, 121syl2anc 582 . . . . . . 7 (𝜑 → (♯‘𝐹) = (♯‘(𝐹 cyclShift 𝐾)))
12318, 122eqtrd 2768 . . . . . 6 (𝜑𝑁 = (♯‘(𝐹 cyclShift 𝐾)))
124115, 123breqtrd 5178 . . . . 5 (𝜑 → 0 < (♯‘(𝐹 cyclShift 𝐾)))
125124adantl 480 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 0 < (♯‘(𝐹 cyclShift 𝐾)))
126123adantl 480 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑁 = (♯‘(𝐹 cyclShift 𝐾)))
127126oveq1d 7441 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
128 eucrct2eupth.e . . . . . 6 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
129128adantl 480 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
13024, 18, 93jca 1125 . . . . . . . . 9 (𝜑 → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
131130adantl 480 . . . . . . . 8 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
132 cshimadifsn0 14821 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
133131, 132syl 17 . . . . . . 7 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
1347imaeq1i 6065 . . . . . . 7 ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))
135133, 134eqtrdi 2784 . . . . . 6 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1))))
136135reseq2d 5989 . . . . 5 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
137129, 136eqtrd 2768 . . . 4 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
138 eqid 2728 . . . 4 ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)) = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
139 eqid 2728 . . . 4 ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1)))
1401, 2, 110, 112, 113, 125, 127, 137, 138, 139eucrct2eupth1 30074 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))(EulerPaths‘𝑆)((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
141 eucrct2eupth.h . . . 4 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))
142141a1i 11 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)))
143 eucrct2eupth.q . . . . 5 𝑄 = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
144 fzossfz 13691 . . . . . . . 8 (0..^𝑁) ⊆ (0...𝑁)
14518oveq2d 7442 . . . . . . . 8 (𝜑 → (0...𝑁) = (0...(♯‘𝐹)))
146144, 145sseqtrid 4034 . . . . . . 7 (𝜑 → (0..^𝑁) ⊆ (0...(♯‘𝐹)))
147146resmptd 6049 . . . . . 6 (𝜑 → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
148 elfzoel2 13671 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
149 fzoval 13673 . . . . . . . 8 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
1509, 148, 1493syl 18 . . . . . . 7 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
151150reseq2d 5989 . . . . . 6 (𝜑 → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
152147, 151eqtr3d 2770 . . . . 5 (𝜑 → (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
153143, 152eqtrid 2780 . . . 4 (𝜑𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
154153adantl 480 . . 3 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0...(𝑁 − 1))))
155140, 142, 1543brtr4d 5184 . 2 ((𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻(EulerPaths‘𝑆)𝑄)
15620adantl 480 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(Circuits‘𝐺)𝑃)
157 peano2nn0 12550 . . . . . . . . . . . . 13 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ0)
1581573ad2ant1 1130 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ∈ ℕ0)
159158adantr 479 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → (𝐽 + 1) ∈ ℕ0)
160 simpl2 1189 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → 𝑁 ∈ ℕ)
161 1cnd 11247 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 1 ∈ ℂ)
162 nn0cn 12520 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
1631623ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
16412, 161, 163subadd2d 11628 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝑁 − 1) = 𝐽 ↔ (𝐽 + 1) = 𝑁))
165 eqcom 2735 . . . . . . . . . . . . . . 15 (𝐽 = (𝑁 − 1) ↔ (𝑁 − 1) = 𝐽)
166 eqcom 2735 . . . . . . . . . . . . . . 15 (𝑁 = (𝐽 + 1) ↔ (𝐽 + 1) = 𝑁)
167164, 165, 1663bitr4g 313 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 = (𝑁 − 1) ↔ 𝑁 = (𝐽 + 1)))
168167necon3bbid 2975 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) ↔ 𝑁 ≠ (𝐽 + 1)))
169157nn0red 12571 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℝ)
1701693ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ∈ ℝ)
171 nnre 12257 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1721713ad2ant2 1131 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
173 nn0z 12621 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
174 nnz 12617 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
175 zltp1le 12650 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝐽 + 1) ≤ 𝑁))
176173, 174, 175syl2an 594 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ (𝐽 + 1) ≤ 𝑁))
177176biimp3a 1465 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 1) ≤ 𝑁)
178170, 172, 177leltned 11405 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝐽 + 1) < 𝑁𝑁 ≠ (𝐽 + 1)))
179178biimprd 247 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁 ≠ (𝐽 + 1) → (𝐽 + 1) < 𝑁))
180168, 179sylbid 239 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) < 𝑁))
181180imp 405 . . . . . . . . . . 11 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → (𝐽 + 1) < 𝑁)
182159, 160, 1813jca 1125 . . . . . . . . . 10 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ ¬ 𝐽 = (𝑁 − 1)) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁))
183182ex 411 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (¬ 𝐽 = (𝑁 − 1) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁)))
18410, 183sylbi 216 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → (¬ 𝐽 = (𝑁 − 1) → ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁)))
185 elfzo0 13713 . . . . . . . 8 ((𝐽 + 1) ∈ (0..^𝑁) ↔ ((𝐽 + 1) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝐽 + 1) < 𝑁))
186184, 185imbitrrdi 251 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) ∈ (0..^𝑁)))
1879, 186syl 17 . . . . . 6 (𝜑 → (¬ 𝐽 = (𝑁 − 1) → (𝐽 + 1) ∈ (0..^𝑁)))
188187impcom 406 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐽 + 1) ∈ (0..^𝑁))
1895a1i 11 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐾 = (𝐽 + 1))
19018eqcomd 2734 . . . . . . 7 (𝜑 → (♯‘𝐹) = 𝑁)
191190oveq2d 7442 . . . . . 6 (𝜑 → (0..^(♯‘𝐹)) = (0..^𝑁))
192191adantl 480 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0..^(♯‘𝐹)) = (0..^𝑁))
193188, 189, 1923eltr4d 2844 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐾 ∈ (0..^(♯‘𝐹)))
194 eqid 2728 . . . 4 (𝐹 cyclShift 𝐾) = (𝐹 cyclShift 𝐾)
195 eqid 2728 . . . 4 (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))))
1963adantl 480 . . . 4 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐹(EulerPaths‘𝐺)𝑃)
1971, 2, 156, 31, 193, 194, 195, 196eucrctshift 30073 . . 3 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))))))
198 simprl 769 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))
199 simprr 771 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))
200124ad2antlr 725 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 0 < (♯‘(𝐹 cyclShift 𝐾)))
201123oveq1d 7441 . . . . . 6 (𝜑 → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
202201ad2antlr 725 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (𝑁 − 1) = ((♯‘(𝐹 cyclShift 𝐾)) − 1))
203128adantl 480 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))))
204130adantl 480 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 ∈ Word dom 𝐼𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)))
205204, 132syl 17 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
206205, 134eqtrdi 2784 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1))))
207206reseq2d 5989 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝐼 ↾ (𝐹 “ ((0..^𝑁) ∖ {𝐽}))) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
208203, 207eqtrd 2768 . . . . . 6 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
209208adantr 479 . . . . 5 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → (iEdg‘𝑆) = (𝐼 ↾ ((𝐹 cyclShift 𝐾) “ (0..^(𝑁 − 1)))))
210 eqid 2728 . . . . 5 ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1)))
2111, 2, 198, 199, 113, 200, 202, 209, 138, 210eucrct2eupth1 30074 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1))(EulerPaths‘𝑆)((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
212141a1i 11 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝐻 = ((𝐹 cyclShift 𝐾) prefix (𝑁 − 1)))
213190oveq1d 7441 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐹) − 𝐾) = (𝑁𝐾))
214213breq2d 5164 . . . . . . . . . . 11 (𝜑 → (𝑥 ≤ ((♯‘𝐹) − 𝐾) ↔ 𝑥 ≤ (𝑁𝐾)))
215214adantl 480 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ≤ ((♯‘𝐹) − 𝐾) ↔ 𝑥 ≤ (𝑁𝐾)))
216190oveq2d 7442 . . . . . . . . . . . 12 (𝜑 → ((𝑥 + 𝐾) − (♯‘𝐹)) = ((𝑥 + 𝐾) − 𝑁))
217216fveq2d 6906 . . . . . . . . . . 11 (𝜑 → (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))) = (𝑃‘((𝑥 + 𝐾) − 𝑁)))
218217adantl 480 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))) = (𝑃‘((𝑥 + 𝐾) − 𝑁)))
219215, 218ifbieq2d 4558 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹)))) = if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁))))
220219mpteq2dv 5254 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) = (𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
221150eqcomd 2734 . . . . . . . . 9 (𝜑 → (0...(𝑁 − 1)) = (0..^𝑁))
222221adantl 480 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0...(𝑁 − 1)) = (0..^𝑁))
223220, 222reseq12d 5990 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)))
22418adantl 480 . . . . . . . . . 10 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑁 = (♯‘𝐹))
225224oveq2d 7442 . . . . . . . . 9 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0...𝑁) = (0...(♯‘𝐹)))
226144, 225sseqtrid 4034 . . . . . . . 8 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → (0..^𝑁) ⊆ (0...(♯‘𝐹)))
227226resmptd 6049 . . . . . . 7 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))) ↾ (0..^𝑁)) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
228223, 227eqtrd 2768 . . . . . 6 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))) = (𝑥 ∈ (0..^𝑁) ↦ if(𝑥 ≤ (𝑁𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − 𝑁)))))
229143, 228eqtr4id 2787 . . . . 5 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
230229adantr 479 . . . 4 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝑄 = ((𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ↾ (0...(𝑁 − 1))))
231211, 212, 2303brtr4d 5184 . . 3 (((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) ∧ ((𝐹 cyclShift 𝐾)(EulerPaths‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))) ∧ (𝐹 cyclShift 𝐾)(Circuits‘𝐺)(𝑥 ∈ (0...(♯‘𝐹)) ↦ if(𝑥 ≤ ((♯‘𝐹) − 𝐾), (𝑃‘(𝑥 + 𝐾)), (𝑃‘((𝑥 + 𝐾) − (♯‘𝐹))))))) → 𝐻(EulerPaths‘𝑆)𝑄)
232197, 231mpdan 685 . 2 ((¬ 𝐽 = (𝑁 − 1) ∧ 𝜑) → 𝐻(EulerPaths‘𝑆)𝑄)
233155, 232pm2.61ian 810 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2937  cdif 3946  cun 3947  ifcif 4532  {csn 4632   class class class wbr 5152  cmpt 5235  dom cdm 5682  cres 5684  cima 5685   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  cc 11144  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   < clt 11286  cle 11287  cmin 11482  cn 12250  0cn0 12510  cz 12596  ...cfz 13524  ..^cfzo 13667  chash 14329  Word cword 14504   prefix cpfx 14660   cyclShift ccsh 14778  Vtxcvtx 28829  iEdgciedg 28830  Walkscwlks 29430  Trailsctrls 29524  Circuitsccrcts 29618  EulerPathsceupth 30027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-ico 13370  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-hash 14330  df-word 14505  df-concat 14561  df-substr 14631  df-pfx 14661  df-csh 14779  df-wlks 29433  df-trls 29526  df-crcts 29620  df-eupth 30028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »