Proof of Theorem m1pmeq
Step | Hyp | Ref
| Expression |
1 | | m1pmeq.1 |
. 2
⊢ (𝜑 → 𝐼 = (𝐾 · 𝐽)) |
2 | | m1pmeq.r |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ Field) |
3 | 2 | flddrngd 20629 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ DivRing) |
4 | 3 | drngringd 20625 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ Ring) |
5 | | m1pmeq.h |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑈) |
6 | | eqid 2728 |
. . . . . . 7
⊢
(Base‘𝑃) =
(Base‘𝑃) |
7 | | m1pmeq.u |
. . . . . . 7
⊢ 𝑈 = (Unit‘𝑃) |
8 | 6, 7 | unitcl 20307 |
. . . . . 6
⊢ (𝐾 ∈ 𝑈 → 𝐾 ∈ (Base‘𝑃)) |
9 | 5, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (Base‘𝑃)) |
10 | 5, 7 | eleqtrdi 2839 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (Unit‘𝑃)) |
11 | | m1pmeq.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝐹) |
12 | | eqid 2728 |
. . . . . . . 8
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
13 | | eqid 2728 |
. . . . . . . 8
⊢
(Base‘𝐹) =
(Base‘𝐹) |
14 | | eqid 2728 |
. . . . . . . 8
⊢
(0g‘𝐹) = (0g‘𝐹) |
15 | | eqid 2728 |
. . . . . . . 8
⊢ (
deg1 ‘𝐹) =
( deg1 ‘𝐹) |
16 | 11, 12, 13, 14, 2, 15, 9 | ply1unit 33249 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ (Unit‘𝑃) ↔ (( deg1 ‘𝐹)‘𝐾) = 0)) |
17 | 10, 16 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (( deg1
‘𝐹)‘𝐾) = 0) |
18 | | 0le0 12337 |
. . . . . 6
⊢ 0 ≤
0 |
19 | 17, 18 | eqbrtrdi 5181 |
. . . . 5
⊢ (𝜑 → (( deg1
‘𝐹)‘𝐾) ≤ 0) |
20 | 15, 11, 6, 12 | deg1le0 26040 |
. . . . . 6
⊢ ((𝐹 ∈ Ring ∧ 𝐾 ∈ (Base‘𝑃)) → ((( deg1
‘𝐹)‘𝐾) ≤ 0 ↔ 𝐾 = ((algSc‘𝑃)‘((coe1‘𝐾)‘0)))) |
21 | 20 | biimpa 476 |
. . . . 5
⊢ (((𝐹 ∈ Ring ∧ 𝐾 ∈ (Base‘𝑃)) ∧ (( deg1
‘𝐹)‘𝐾) ≤ 0) → 𝐾 = ((algSc‘𝑃)‘((coe1‘𝐾)‘0))) |
22 | 4, 9, 19, 21 | syl21anc 837 |
. . . 4
⊢ (𝜑 → 𝐾 = ((algSc‘𝑃)‘((coe1‘𝐾)‘0))) |
23 | | eqid 2728 |
. . . . . . 7
⊢
(.r‘𝐹) = (.r‘𝐹) |
24 | | eqid 2728 |
. . . . . . 7
⊢
(1r‘𝐹) = (1r‘𝐹) |
25 | 17 | fveq2d 6895 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘𝐾)‘(( deg1 ‘𝐹)‘𝐾)) = ((coe1‘𝐾)‘0)) |
26 | | 0nn0 12511 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
27 | 17, 26 | eqeltrdi 2837 |
. . . . . . . . 9
⊢ (𝜑 → (( deg1
‘𝐹)‘𝐾) ∈
ℕ0) |
28 | | eqid 2728 |
. . . . . . . . . 10
⊢
(coe1‘𝐾) = (coe1‘𝐾) |
29 | 28, 6, 11, 13 | coe1fvalcl 22124 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (Base‘𝑃) ∧ (( deg1
‘𝐹)‘𝐾) ∈ ℕ0)
→ ((coe1‘𝐾)‘(( deg1 ‘𝐹)‘𝐾)) ∈ (Base‘𝐹)) |
30 | 9, 27, 29 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘𝐾)‘(( deg1 ‘𝐹)‘𝐾)) ∈ (Base‘𝐹)) |
31 | 25, 30 | eqeltrrd 2830 |
. . . . . . 7
⊢ (𝜑 →
((coe1‘𝐾)‘0) ∈ (Base‘𝐹)) |
32 | 13, 23, 24, 4, 31 | ringridmd 20202 |
. . . . . 6
⊢ (𝜑 →
(((coe1‘𝐾)‘0)(.r‘𝐹)(1r‘𝐹)) =
((coe1‘𝐾)‘0)) |
33 | 1 | fveq2d 6895 |
. . . . . . . 8
⊢ (𝜑 →
(coe1‘𝐼) =
(coe1‘(𝐾
·
𝐽))) |
34 | 1 | fveq2d 6895 |
. . . . . . . . 9
⊢ (𝜑 → (( deg1
‘𝐹)‘𝐼) = (( deg1
‘𝐹)‘(𝐾 · 𝐽))) |
35 | | eqid 2728 |
. . . . . . . . . 10
⊢
(RLReg‘𝐹) =
(RLReg‘𝐹) |
36 | | m1pmeq.t |
. . . . . . . . . 10
⊢ · =
(.r‘𝑃) |
37 | | eqid 2728 |
. . . . . . . . . 10
⊢
(0g‘𝑃) = (0g‘𝑃) |
38 | | drngnzr 20637 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ DivRing → 𝐹 ∈ NzRing) |
39 | 3, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ NzRing) |
40 | 11 | ply1nz 26050 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ NzRing → 𝑃 ∈ NzRing) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ NzRing) |
42 | 7, 37, 41, 5 | unitnz 32941 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ≠ (0g‘𝑃)) |
43 | | fldidom 21251 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ Field → 𝐹 ∈ IDomn) |
44 | 2, 43 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ IDomn) |
45 | 44 | idomdomd 21248 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ Domn) |
46 | 15, 11, 14, 6, 37, 4, 9, 19 | deg1le0eq0 33247 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 = (0g‘𝑃) ↔ ((coe1‘𝐾)‘0) =
(0g‘𝐹))) |
47 | 46 | necon3bid 2981 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 ≠ (0g‘𝑃) ↔ ((coe1‘𝐾)‘0) ≠
(0g‘𝐹))) |
48 | 42, 47 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((coe1‘𝐾)‘0) ≠ (0g‘𝐹)) |
49 | 25, 48 | eqnetrd 3004 |
. . . . . . . . . . 11
⊢ (𝜑 →
((coe1‘𝐾)‘(( deg1 ‘𝐹)‘𝐾)) ≠ (0g‘𝐹)) |
50 | 13, 35, 14 | domnrrg 21240 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Domn ∧
((coe1‘𝐾)‘(( deg1 ‘𝐹)‘𝐾)) ∈ (Base‘𝐹) ∧ ((coe1‘𝐾)‘(( deg1
‘𝐹)‘𝐾)) ≠
(0g‘𝐹))
→ ((coe1‘𝐾)‘(( deg1 ‘𝐹)‘𝐾)) ∈ (RLReg‘𝐹)) |
51 | 45, 30, 49, 50 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 →
((coe1‘𝐾)‘(( deg1 ‘𝐹)‘𝐾)) ∈ (RLReg‘𝐹)) |
52 | | m1pmeq.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ 𝑀) |
53 | | m1pmeq.m |
. . . . . . . . . . . 12
⊢ 𝑀 =
(Monic1p‘𝐹) |
54 | 11, 6, 53 | mon1pcl 26073 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ 𝑀 → 𝐽 ∈ (Base‘𝑃)) |
55 | 52, 54 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (Base‘𝑃)) |
56 | 11, 37, 53 | mon1pn0 26075 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ 𝑀 → 𝐽 ≠ (0g‘𝑃)) |
57 | 52, 56 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ≠ (0g‘𝑃)) |
58 | 15, 11, 35, 6, 36, 37, 4, 9, 42, 51, 55, 57 | deg1mul2 26043 |
. . . . . . . . 9
⊢ (𝜑 → (( deg1
‘𝐹)‘(𝐾 · 𝐽)) = ((( deg1 ‘𝐹)‘𝐾) + (( deg1 ‘𝐹)‘𝐽))) |
59 | 34, 58 | eqtrd 2768 |
. . . . . . . 8
⊢ (𝜑 → (( deg1
‘𝐹)‘𝐼) = ((( deg1
‘𝐹)‘𝐾) + (( deg1
‘𝐹)‘𝐽))) |
60 | 33, 59 | fveq12d 6898 |
. . . . . . 7
⊢ (𝜑 →
((coe1‘𝐼)‘(( deg1 ‘𝐹)‘𝐼)) = ((coe1‘(𝐾 · 𝐽))‘((( deg1 ‘𝐹)‘𝐾) + (( deg1 ‘𝐹)‘𝐽)))) |
61 | | m1pmeq.f |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝑀) |
62 | 15, 24, 53 | mon1pldg 26078 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑀 → ((coe1‘𝐼)‘(( deg1
‘𝐹)‘𝐼)) = (1r‘𝐹)) |
63 | 61, 62 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
((coe1‘𝐼)‘(( deg1 ‘𝐹)‘𝐼)) = (1r‘𝐹)) |
64 | 11, 36, 23, 6, 15, 37, 4, 9, 42, 55, 57 | coe1mul4 26029 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘(𝐾
·
𝐽))‘(((
deg1 ‘𝐹)‘𝐾) + (( deg1 ‘𝐹)‘𝐽))) = (((coe1‘𝐾)‘(( deg1
‘𝐹)‘𝐾))(.r‘𝐹)((coe1‘𝐽)‘(( deg1
‘𝐹)‘𝐽)))) |
65 | 15, 24, 53 | mon1pldg 26078 |
. . . . . . . . . 10
⊢ (𝐽 ∈ 𝑀 → ((coe1‘𝐽)‘(( deg1
‘𝐹)‘𝐽)) = (1r‘𝐹)) |
66 | 52, 65 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 →
((coe1‘𝐽)‘(( deg1 ‘𝐹)‘𝐽)) = (1r‘𝐹)) |
67 | 25, 66 | oveq12d 7432 |
. . . . . . . 8
⊢ (𝜑 →
(((coe1‘𝐾)‘(( deg1 ‘𝐹)‘𝐾))(.r‘𝐹)((coe1‘𝐽)‘(( deg1 ‘𝐹)‘𝐽))) = (((coe1‘𝐾)‘0)(.r‘𝐹)(1r‘𝐹))) |
68 | 64, 67 | eqtrd 2768 |
. . . . . . 7
⊢ (𝜑 →
((coe1‘(𝐾
·
𝐽))‘(((
deg1 ‘𝐹)‘𝐾) + (( deg1 ‘𝐹)‘𝐽))) = (((coe1‘𝐾)‘0)(.r‘𝐹)(1r‘𝐹))) |
69 | 60, 63, 68 | 3eqtr3rd 2777 |
. . . . . 6
⊢ (𝜑 →
(((coe1‘𝐾)‘0)(.r‘𝐹)(1r‘𝐹)) = (1r‘𝐹)) |
70 | 32, 69 | eqtr3d 2770 |
. . . . 5
⊢ (𝜑 →
((coe1‘𝐾)‘0) = (1r‘𝐹)) |
71 | 70 | fveq2d 6895 |
. . . 4
⊢ (𝜑 → ((algSc‘𝑃)‘((coe1‘𝐾)‘0)) =
((algSc‘𝑃)‘(1r‘𝐹))) |
72 | | eqid 2728 |
. . . . 5
⊢
(1r‘𝑃) = (1r‘𝑃) |
73 | 11, 12, 24, 72, 4 | ply1ascl1 33246 |
. . . 4
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝐹)) = (1r‘𝑃)) |
74 | 22, 71, 73 | 3eqtrd 2772 |
. . 3
⊢ (𝜑 → 𝐾 = (1r‘𝑃)) |
75 | 74 | oveq1d 7429 |
. 2
⊢ (𝜑 → (𝐾 · 𝐽) = ((1r‘𝑃) · 𝐽)) |
76 | 11 | ply1ring 22159 |
. . . 4
⊢ (𝐹 ∈ Ring → 𝑃 ∈ Ring) |
77 | 4, 76 | syl 17 |
. . 3
⊢ (𝜑 → 𝑃 ∈ Ring) |
78 | 6, 36, 72, 77, 55 | ringlidmd 20201 |
. 2
⊢ (𝜑 →
((1r‘𝑃)
·
𝐽) = 𝐽) |
79 | 1, 75, 78 | 3eqtrd 2772 |
1
⊢ (𝜑 → 𝐼 = 𝐽) |