![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mon1pcl | Structured version Visualization version GIF version |
Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pcl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
uc1pcl.b | ⊢ 𝐵 = (Base‘𝑃) |
mon1pcl.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
Ref | Expression |
---|---|
mon1pcl | ⊢ (𝐹 ∈ 𝑀 → 𝐹 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uc1pcl.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | uc1pcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | eqid 2728 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
4 | eqid 2728 | . . 3 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘𝑅) | |
5 | mon1pcl.m | . . 3 ⊢ 𝑀 = (Monic1p‘𝑅) | |
6 | eqid 2728 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | ismon1p 26071 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑃) ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) = (1r‘𝑅))) |
8 | 7 | simp1bi 1143 | 1 ⊢ (𝐹 ∈ 𝑀 → 𝐹 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ‘cfv 6542 Basecbs 17173 0gc0g 17414 1rcur 20114 Poly1cpl1 22089 coe1cco1 22090 deg1 cdg1 25980 Monic1pcmn1 26054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-1cn 11190 ax-addcl 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12237 df-slot 17144 df-ndx 17156 df-base 17174 df-mon1 26059 |
This theorem is referenced by: mon1puc1p 26079 deg1submon1p 26081 ply1rem 26093 fta1glem1 26095 fta1glem2 26096 m1pmeq 33250 elirng 33354 irngnzply1 33359 irredminply 33378 mon1psubm 42621 |
Copyright terms: Public domain | W3C validator |