![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismon1p | Structured version Visualization version GIF version |
Description: Being a monic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
uc1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
uc1pval.z | ⊢ 0 = (0g‘𝑃) |
uc1pval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
mon1pval.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
mon1pval.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ismon1p | ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 2999 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ≠ 0 ↔ 𝐹 ≠ 0 )) | |
2 | fveq2 6891 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coe1‘𝑓) = (coe1‘𝐹)) | |
3 | fveq2 6891 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) | |
4 | 2, 3 | fveq12d 6898 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((coe1‘𝑓)‘(𝐷‘𝑓)) = ((coe1‘𝐹)‘(𝐷‘𝐹))) |
5 | 4 | eqeq1d 2730 | . . . 4 ⊢ (𝑓 = 𝐹 → (((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ↔ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
6 | 1, 5 | anbi12d 631 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 ) ↔ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
7 | uc1pval.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | uc1pval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
9 | uc1pval.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
10 | uc1pval.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
11 | mon1pval.m | . . . 4 ⊢ 𝑀 = (Monic1p‘𝑅) | |
12 | mon1pval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
13 | 7, 8, 9, 10, 11, 12 | mon1pval 26070 | . . 3 ⊢ 𝑀 = {𝑓 ∈ 𝐵 ∣ (𝑓 ≠ 0 ∧ ((coe1‘𝑓)‘(𝐷‘𝑓)) = 1 )} |
14 | 6, 13 | elrab2 3684 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) |
15 | 3anass 1093 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ) ↔ (𝐹 ∈ 𝐵 ∧ (𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 ))) | |
16 | 14, 15 | bitr4i 278 | 1 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ∧ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1 )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ‘cfv 6542 Basecbs 17173 0gc0g 17414 1rcur 20114 Poly1cpl1 22089 coe1cco1 22090 deg1 cdg1 25980 Monic1pcmn1 26054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-1cn 11190 ax-addcl 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12237 df-slot 17144 df-ndx 17156 df-base 17174 df-mon1 26059 |
This theorem is referenced by: mon1pcl 26073 mon1pn0 26075 mon1pldg 26078 uc1pmon1p 26080 mon1pid 26082 ply1remlem 26092 0ringmon1p 33226 ressply1mon1p 33237 mon1psubm 42621 |
Copyright terms: Public domain | W3C validator |