![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitcl | Structured version Visualization version GIF version |
Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unitcl.1 | ⊢ 𝐵 = (Base‘𝑅) |
unitcl.2 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
unitcl | ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitcl.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | eqid 2727 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2727 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
4 | eqid 2727 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
5 | eqid 2727 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
6 | 1, 2, 3, 4, 5 | isunit 20317 | . . 3 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋(∥r‘𝑅)(1r‘𝑅) ∧ 𝑋(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
7 | 6 | simplbi 496 | . 2 ⊢ (𝑋 ∈ 𝑈 → 𝑋(∥r‘𝑅)(1r‘𝑅)) |
8 | unitcl.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
9 | 8, 3 | dvdsrcl 20309 | . 2 ⊢ (𝑋(∥r‘𝑅)(1r‘𝑅) → 𝑋 ∈ 𝐵) |
10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 class class class wbr 5150 ‘cfv 6551 Basecbs 17185 1rcur 20126 opprcoppr 20277 ∥rcdsr 20298 Unitcui 20299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fv 6559 df-ov 7427 df-dvdsr 20301 df-unit 20302 |
This theorem is referenced by: unitss 20320 unitmulcl 20324 unitgrp 20327 ringinvcl 20336 unitnegcl 20341 ringunitnzdiv 20342 unitdvcl 20349 dvrid 20350 dvrcan1 20353 dvrcan3 20354 dvreq1 20355 irredrmul 20371 subrguss 20531 subrginv 20532 subrgunit 20534 isdrng2 20643 unitrrg 21245 gzrngunitlem 21370 gzrngunit 21371 zringunit 21397 matinv 22597 cramerimp 22606 unitnmn0 24603 nminvr 24604 nrginvrcnlem 24626 ig1peu 26127 dchrelbas3 27189 dchrmulcl 27200 isdrng4 32980 kerunit 33052 ply1unit 33265 m1pmeq 33266 fldhmf1 41565 invginvrid 47482 lincresunit3lem3 47593 lincresunit3lem1 47598 |
Copyright terms: Public domain | W3C validator |