MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringunitnzdiv Structured version   Visualization version   GIF version

Theorem ringunitnzdiv 20345
Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
ringunitnzdiv.b 𝐵 = (Base‘𝑅)
ringunitnzdiv.z 0 = (0g𝑅)
ringunitnzdiv.t · = (.r𝑅)
ringunitnzdiv.r (𝜑𝑅 ∈ Ring)
ringunitnzdiv.y (𝜑𝑌𝐵)
ringunitnzdiv.x (𝜑𝑋 ∈ (Unit‘𝑅))
Assertion
Ref Expression
ringunitnzdiv (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))

Proof of Theorem ringunitnzdiv
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ringunitnzdiv.b . 2 𝐵 = (Base‘𝑅)
2 ringunitnzdiv.t . 2 · = (.r𝑅)
3 eqid 2725 . 2 (1r𝑅) = (1r𝑅)
4 ringunitnzdiv.z . 2 0 = (0g𝑅)
5 ringunitnzdiv.r . 2 (𝜑𝑅 ∈ Ring)
6 ringunitnzdiv.x . . 3 (𝜑𝑋 ∈ (Unit‘𝑅))
7 eqid 2725 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
81, 7unitcl 20322 . . 3 (𝑋 ∈ (Unit‘𝑅) → 𝑋𝐵)
96, 8syl 17 . 2 (𝜑𝑋𝐵)
10 eqid 2725 . . . . 5 (invr𝑅) = (invr𝑅)
117, 10, 1ringinvcl 20339 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → ((invr𝑅)‘𝑋) ∈ 𝐵)
125, 6, 11syl2anc 582 . . 3 (𝜑 → ((invr𝑅)‘𝑋) ∈ 𝐵)
13 oveq1 7424 . . . . 5 (𝑒 = ((invr𝑅)‘𝑋) → (𝑒 · 𝑋) = (((invr𝑅)‘𝑋) · 𝑋))
1413eqeq1d 2727 . . . 4 (𝑒 = ((invr𝑅)‘𝑋) → ((𝑒 · 𝑋) = (1r𝑅) ↔ (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅)))
1514adantl 480 . . 3 ((𝜑𝑒 = ((invr𝑅)‘𝑋)) → ((𝑒 · 𝑋) = (1r𝑅) ↔ (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅)))
167, 10, 2, 3unitlinv 20340 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
175, 6, 16syl2anc 582 . . 3 (𝜑 → (((invr𝑅)‘𝑋) · 𝑋) = (1r𝑅))
1812, 15, 17rspcedvd 3609 . 2 (𝜑 → ∃𝑒𝐵 (𝑒 · 𝑋) = (1r𝑅))
19 ringunitnzdiv.y . 2 (𝜑𝑌𝐵)
201, 2, 3, 4, 5, 9, 18, 19ringinvnzdiv 20245 1 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  cfv 6547  (class class class)co 7417  Basecbs 17180  .rcmulr 17234  0gc0g 17421  1rcur 20129  Ringcrg 20181  Unitcui 20302  invrcinvr 20334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-2nd 7993  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18898  df-minusg 18899  df-cmn 19745  df-abl 19746  df-mgp 20083  df-rng 20101  df-ur 20130  df-ring 20183  df-oppr 20281  df-dvdsr 20304  df-unit 20305  df-invr 20335
This theorem is referenced by:  ring1nzdiv  20346
  Copyright terms: Public domain W3C validator
OSZAR »