![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringunitnzdiv | Structured version Visualization version GIF version |
Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025.) |
Ref | Expression |
---|---|
ringunitnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
ringunitnzdiv.z | ⊢ 0 = (0g‘𝑅) |
ringunitnzdiv.t | ⊢ · = (.r‘𝑅) |
ringunitnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringunitnzdiv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringunitnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ (Unit‘𝑅)) |
Ref | Expression |
---|---|
ringunitnzdiv | ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringunitnzdiv.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | ringunitnzdiv.t | . 2 ⊢ · = (.r‘𝑅) | |
3 | eqid 2725 | . 2 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | ringunitnzdiv.z | . 2 ⊢ 0 = (0g‘𝑅) | |
5 | ringunitnzdiv.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
6 | ringunitnzdiv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Unit‘𝑅)) | |
7 | eqid 2725 | . . . 4 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
8 | 1, 7 | unitcl 20322 | . . 3 ⊢ (𝑋 ∈ (Unit‘𝑅) → 𝑋 ∈ 𝐵) |
9 | 6, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
10 | eqid 2725 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
11 | 7, 10, 1 | ringinvcl 20339 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → ((invr‘𝑅)‘𝑋) ∈ 𝐵) |
12 | 5, 6, 11 | syl2anc 582 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘𝑋) ∈ 𝐵) |
13 | oveq1 7424 | . . . . 5 ⊢ (𝑒 = ((invr‘𝑅)‘𝑋) → (𝑒 · 𝑋) = (((invr‘𝑅)‘𝑋) · 𝑋)) | |
14 | 13 | eqeq1d 2727 | . . . 4 ⊢ (𝑒 = ((invr‘𝑅)‘𝑋) → ((𝑒 · 𝑋) = (1r‘𝑅) ↔ (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅))) |
15 | 14 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝑒 = ((invr‘𝑅)‘𝑋)) → ((𝑒 · 𝑋) = (1r‘𝑅) ↔ (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅))) |
16 | 7, 10, 2, 3 | unitlinv 20340 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅)) |
17 | 5, 6, 16 | syl2anc 582 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝑋) · 𝑋) = (1r‘𝑅)) |
18 | 12, 15, 17 | rspcedvd 3609 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 (𝑒 · 𝑋) = (1r‘𝑅)) |
19 | ringunitnzdiv.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
20 | 1, 2, 3, 4, 5, 9, 18, 19 | ringinvnzdiv 20245 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ‘cfv 6547 (class class class)co 7417 Basecbs 17180 .rcmulr 17234 0gc0g 17421 1rcur 20129 Ringcrg 20181 Unitcui 20302 invrcinvr 20334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18898 df-minusg 18899 df-cmn 19745 df-abl 19746 df-mgp 20083 df-rng 20101 df-ur 20130 df-ring 20183 df-oppr 20281 df-dvdsr 20304 df-unit 20305 df-invr 20335 |
This theorem is referenced by: ring1nzdiv 20346 |
Copyright terms: Public domain | W3C validator |