![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitlinv | Structured version Visualization version GIF version |
Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
unitinvcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitinvcl.2 | ⊢ 𝐼 = (invr‘𝑅) |
unitinvcl.3 | ⊢ · = (.r‘𝑅) |
unitinvcl.4 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
unitlinv | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | eqid 2725 | . . . 4 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
3 | 1, 2 | unitgrp 20334 | . . 3 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
4 | 1, 2 | unitgrpbas 20333 | . . . 4 ⊢ 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
5 | 1 | fvexi 6910 | . . . . 5 ⊢ 𝑈 ∈ V |
6 | eqid 2725 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
7 | unitinvcl.3 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
8 | 6, 7 | mgpplusg 20090 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘𝑅)) |
9 | 2, 8 | ressplusg 17274 | . . . . 5 ⊢ (𝑈 ∈ V → · = (+g‘((mulGrp‘𝑅) ↾s 𝑈))) |
10 | 5, 9 | ax-mp 5 | . . . 4 ⊢ · = (+g‘((mulGrp‘𝑅) ↾s 𝑈)) |
11 | eqid 2725 | . . . 4 ⊢ (0g‘((mulGrp‘𝑅) ↾s 𝑈)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)) | |
12 | unitinvcl.2 | . . . . 5 ⊢ 𝐼 = (invr‘𝑅) | |
13 | 1, 2, 12 | invrfval 20340 | . . . 4 ⊢ 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
14 | 4, 10, 11, 13 | grplinv 18954 | . . 3 ⊢ ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
15 | 3, 14 | sylan 578 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
16 | unitinvcl.4 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
17 | 1, 2, 16 | unitgrpid 20336 | . . 3 ⊢ (𝑅 ∈ Ring → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
18 | 17 | adantr 479 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
19 | 15, 18 | eqtr4d 2768 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ‘cfv 6549 (class class class)co 7419 ↾s cress 17212 +gcplusg 17236 .rcmulr 17237 0gc0g 17424 Grpcgrp 18898 mulGrpcmgp 20086 1rcur 20133 Ringcrg 20185 Unitcui 20306 invrcinvr 20338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 |
This theorem is referenced by: ringunitnzdiv 20349 dvrcan1 20360 rhmunitinv 20462 subrginv 20539 subrgunit 20541 drnginvrl 20661 unitrrg 21257 matinv 22623 matunit 22624 slesolinv 22626 nrginvrcnlem 24652 uc1pmon1p 26131 ornglmullt 33116 kerunit 33128 dvdsruassoi 33191 lidlunitel 33230 unitmulrprm 33335 ply1unit 33379 lincresunit3lem3 47717 |
Copyright terms: Public domain | W3C validator |