MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnginvrl Structured version   Visualization version   GIF version

Theorem drnginvrl 20661
Description: Property of the multiplicative inverse in a division ring. (recid2 11920 analog). (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
drnginvrl.b 𝐵 = (Base‘𝑅)
drnginvrl.z 0 = (0g𝑅)
drnginvrl.t · = (.r𝑅)
drnginvrl.u 1 = (1r𝑅)
drnginvrl.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
drnginvrl ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((𝐼𝑋) · 𝑋) = 1 )

Proof of Theorem drnginvrl
StepHypRef Expression
1 drnginvrl.b . . . 4 𝐵 = (Base‘𝑅)
2 eqid 2725 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
3 drnginvrl.z . . . 4 0 = (0g𝑅)
41, 2, 3drngunit 20641 . . 3 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) ↔ (𝑋𝐵𝑋0 )))
5 drngring 20643 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
6 drnginvrl.i . . . . . 6 𝐼 = (invr𝑅)
7 drnginvrl.t . . . . . 6 · = (.r𝑅)
8 drnginvrl.u . . . . . 6 1 = (1r𝑅)
92, 6, 7, 8unitlinv 20344 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → ((𝐼𝑋) · 𝑋) = 1 )
109ex 411 . . . 4 (𝑅 ∈ Ring → (𝑋 ∈ (Unit‘𝑅) → ((𝐼𝑋) · 𝑋) = 1 ))
115, 10syl 17 . . 3 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) → ((𝐼𝑋) · 𝑋) = 1 ))
124, 11sylbird 259 . 2 (𝑅 ∈ DivRing → ((𝑋𝐵𝑋0 ) → ((𝐼𝑋) · 𝑋) = 1 ))
13123impib 1113 1 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((𝐼𝑋) · 𝑋) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  cfv 6549  (class class class)co 7419  Basecbs 17183  .rcmulr 17237  0gc0g 17424  1rcur 20133  Ringcrg 20185  Unitcui 20306  invrcinvr 20338  DivRingcdr 20636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-drng 20638
This theorem is referenced by:  drnginvrld  20663  drngmul0or  20665  lvecvs0or  21008  lssvs0or  21010  lvecinv  21013  lspsnvs  21014  lspfixed  21028  lspsolv  21043  drngnidl  21150  matunitlindflem1  37220  lfl1  38672  eqlkr3  38703  lkrlsp  38704  tendolinv  40708  dochkr1  41081  dochkr1OLDN  41082  lclkrlem2m  41122  hdmapip1  41519  hgmapvvlem2  41527  prjspnfv01  42183
  Copyright terms: Public domain W3C validator
OSZAR »