![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringinvnzdiv | Structured version Visualization version GIF version |
Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.) |
Ref | Expression |
---|---|
ringinvnzdiv.b | ⊢ 𝐵 = (Base‘𝑅) |
ringinvnzdiv.t | ⊢ · = (.r‘𝑅) |
ringinvnzdiv.u | ⊢ 1 = (1r‘𝑅) |
ringinvnzdiv.z | ⊢ 0 = (0g‘𝑅) |
ringinvnzdiv.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringinvnzdiv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringinvnzdiv.a | ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) |
ringinvnzdiv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ringinvnzdiv | ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringinvnzdiv.a | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) | |
2 | ringinvnzdiv.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | ringinvnzdiv.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ringinvnzdiv.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
5 | ringinvnzdiv.t | . . . . . . . . . 10 ⊢ · = (.r‘𝑅) | |
6 | ringinvnzdiv.u | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑅) | |
7 | 4, 5, 6 | ringlidm 20210 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 · 𝑌) = 𝑌) |
8 | 2, 3, 7 | syl2anc 582 | . . . . . . . 8 ⊢ (𝜑 → ( 1 · 𝑌) = 𝑌) |
9 | 8 | eqcomd 2731 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ( 1 · 𝑌)) |
10 | 9 | ad3antrrr 728 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌)) |
11 | oveq1 7424 | . . . . . . . . . 10 ⊢ ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) | |
12 | 11 | eqcoms 2733 | . . . . . . . . 9 ⊢ ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
13 | 12 | adantl 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
14 | 2 | adantr 479 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Ring) |
15 | simpr 483 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) | |
16 | ringinvnzdiv.x | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
17 | 16 | adantr 479 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
18 | 3 | adantr 479 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
19 | 15, 17, 18 | 3jca 1125 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
20 | 14, 19 | jca 510 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
21 | 20 | adantr 479 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
22 | 4, 5 | ringass 20198 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
23 | 21, 22 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
24 | 13, 23 | eqtrd 2765 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
25 | 24 | adantr 479 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
26 | oveq2 7425 | . . . . . . 7 ⊢ ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 )) | |
27 | ringinvnzdiv.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
28 | 4, 5, 27 | ringrz 20235 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
29 | 2, 28 | sylan 578 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
30 | 29 | adantr 479 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 ) |
31 | 26, 30 | sylan9eqr 2787 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 ) |
32 | 10, 25, 31 | 3eqtrd 2769 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 ) |
33 | 32 | exp31 418 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
34 | 33 | rexlimdva 3145 | . . 3 ⊢ (𝜑 → (∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
35 | 1, 34 | mpd 15 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
36 | oveq2 7425 | . . . 4 ⊢ (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 )) | |
37 | 4, 5, 27 | ringrz 20235 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
38 | 2, 16, 37 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
39 | 36, 38 | sylan9eqr 2787 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ) |
40 | 39 | ex 411 | . 2 ⊢ (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 )) |
41 | 35, 40 | impbid 211 | 1 ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 ‘cfv 6547 (class class class)co 7417 Basecbs 17180 .rcmulr 17234 0gc0g 17421 1rcur 20126 Ringcrg 20178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18898 df-minusg 18899 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-ring 20180 |
This theorem is referenced by: ringunitnzdiv 20342 |
Copyright terms: Public domain | W3C validator |