MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredrmul Structured version   Visualization version   GIF version

Theorem irredrmul 20359
Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredrmul.u 𝑈 = (Unit‘𝑅)
irredrmul.t · = (.r𝑅)
Assertion
Ref Expression
irredrmul ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem irredrmul
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋𝐼)
2 simp1 1134 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑅 ∈ Ring)
3 simp3 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌𝑈)
4 irredrmul.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
5 eqid 2728 . . . . . . . . 9 (/r𝑅) = (/r𝑅)
64, 5unitdvcl 20337 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝑈𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
763com23 1124 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑋 · 𝑌) ∈ 𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
873expia 1119 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
92, 3, 8syl2anc 583 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
10 irredn0.i . . . . . . . . 9 𝐼 = (Irred‘𝑅)
11 eqid 2728 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1210, 11irredcl 20356 . . . . . . . 8 (𝑋𝐼𝑋 ∈ (Base‘𝑅))
13123ad2ant2 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
14 irredrmul.t . . . . . . . 8 · = (.r𝑅)
1511, 4, 5, 14dvrcan3 20342 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
162, 13, 3, 15syl3anc 1369 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
1716eleq1d 2814 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈𝑋𝑈))
189, 17sylibd 238 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈𝑋𝑈))
192ad2antrr 725 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑅 ∈ Ring)
20 eldifi 4122 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑦 ∈ (Base‘𝑅))
2120ad2antrl 727 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑦 ∈ (Base‘𝑅))
223ad2antrr 725 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑌𝑈)
2311, 4, 5dvrcl 20336 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
2419, 21, 22, 23syl3anc 1369 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
25 eldifn 4123 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → ¬ 𝑦𝑈)
2625ad2antrl 727 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ 𝑦𝑈)
274, 14unitmulcl 20312 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
28273com23 1124 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
29283expia 1119 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3019, 22, 29syl2anc 583 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3111, 4, 5, 14dvrcan1 20341 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3219, 21, 22, 31syl3anc 1369 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3332eleq1d 2814 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈𝑦𝑈))
3430, 33sylibd 238 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈𝑦𝑈))
3526, 34mtod 197 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ (𝑦(/r𝑅)𝑌) ∈ 𝑈)
3624, 35eldifd 3956 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈))
37 simprr 772 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
3837oveq1d 7429 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = ((𝑋 · 𝑌)(/r𝑅)𝑌))
39 eldifi 4122 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑥 ∈ (Base‘𝑅))
4039ad2antlr 726 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑥 ∈ (Base‘𝑅))
4111, 4, 5, 14dvrass 20340 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈)) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4219, 40, 21, 22, 41syl13anc 1370 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4316ad2antrr 725 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
4438, 42, 433eqtr3d 2776 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋)
45 oveq2 7422 . . . . . . . . 9 (𝑧 = (𝑦(/r𝑅)𝑌) → (𝑥 · 𝑧) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4645eqeq1d 2730 . . . . . . . 8 (𝑧 = (𝑦(/r𝑅)𝑌) → ((𝑥 · 𝑧) = 𝑋 ↔ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋))
4746rspcev 3608 . . . . . . 7 (((𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4836, 44, 47syl2anc 583 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4948rexlimdvaa 3152 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) → (∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5049reximdva 3164 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5118, 50orim12d 963 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)) → (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
5211, 4unitcl 20307 . . . . . 6 (𝑌𝑈𝑌 ∈ (Base‘𝑅))
53523ad2ant3 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
5411, 14ringcl 20183 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
552, 13, 53, 54syl3anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
56 eqid 2728 . . . . 5 ((Base‘𝑅) ∖ 𝑈) = ((Base‘𝑅) ∖ 𝑈)
5711, 4, 10, 56, 14isnirred 20352 . . . 4 ((𝑋 · 𝑌) ∈ (Base‘𝑅) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5855, 57syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5911, 4, 10, 56, 14isnirred 20352 . . . 4 (𝑋 ∈ (Base‘𝑅) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6013, 59syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6151, 58, 603imtr4d 294 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 → ¬ 𝑋𝐼))
621, 61mt4d 117 1 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wrex 3066  cdif 3942  cfv 6542  (class class class)co 7414  Basecbs 17173  .rcmulr 17227  Ringcrg 20166  Unitcui 20287  Irredcir 20288  /rcdvr 20332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-minusg 18887  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-irred 20291  df-invr 20320  df-dvr 20333
This theorem is referenced by:  irredlmul  20360  irredneg  20362
  Copyright terms: Public domain W3C validator
OSZAR »