![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phrel | Structured version Visualization version GIF version |
Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phrel | ⊢ Rel CPreHilOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnv 30623 | . . 3 ⊢ (𝑥 ∈ CPreHilOLD → 𝑥 ∈ NrmCVec) | |
2 | 1 | ssriv 3984 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
3 | nvrel 30411 | . 2 ⊢ Rel NrmCVec | |
4 | relss 5783 | . 2 ⊢ (CPreHilOLD ⊆ NrmCVec → (Rel NrmCVec → Rel CPreHilOLD)) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Rel CPreHilOLD |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3947 Rel wrel 5683 NrmCVeccnv 30393 CPreHilOLDccphlo 30621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5211 df-xp 5684 df-rel 5685 df-oprab 7424 df-nv 30401 df-ph 30622 |
This theorem is referenced by: phop 30627 |
Copyright terms: Public domain | W3C validator |