![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phop | Structured version Visualization version GIF version |
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
phop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
phop.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
phop | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phrel 30624 | . . 3 ⊢ Rel CPreHilOLD | |
2 | 1st2nd 8043 | . . 3 ⊢ ((Rel CPreHilOLD ∧ 𝑈 ∈ CPreHilOLD) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
3 | 1, 2 | mpan 689 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
4 | phop.6 | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 4 | nmcvfval 30416 | . . . 4 ⊢ 𝑁 = (2nd ‘𝑈) |
6 | 5 | opeq2i 4878 | . . 3 ⊢ 〈(1st ‘𝑈), 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
7 | phnv 30623 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
8 | eqid 2728 | . . . . . 6 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
9 | 8 | nvvc 30424 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
10 | vcrel 30369 | . . . . . . 7 ⊢ Rel CVecOLD | |
11 | 1st2nd 8043 | . . . . . . 7 ⊢ ((Rel CVecOLD ∧ (1st ‘𝑈) ∈ CVecOLD) → (1st ‘𝑈) = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉) | |
12 | 10, 11 | mpan 689 | . . . . . 6 ⊢ ((1st ‘𝑈) ∈ CVecOLD → (1st ‘𝑈) = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉) |
13 | phop.2 | . . . . . . . 8 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
14 | 13 | vafval 30412 | . . . . . . 7 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
15 | phop.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
16 | 15 | smfval 30414 | . . . . . . 7 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
17 | 14, 16 | opeq12i 4879 | . . . . . 6 ⊢ 〈𝐺, 𝑆〉 = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉 |
18 | 12, 17 | eqtr4di 2786 | . . . . 5 ⊢ ((1st ‘𝑈) ∈ CVecOLD → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
19 | 7, 9, 18 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
20 | 19 | opeq1d 4880 | . . 3 ⊢ (𝑈 ∈ CPreHilOLD → 〈(1st ‘𝑈), 𝑁〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
21 | 6, 20 | eqtr3id 2782 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 〈(1st ‘𝑈), (2nd ‘𝑈)〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
22 | 3, 21 | eqtrd 2768 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 〈cop 4635 Rel wrel 5683 ‘cfv 6548 1st c1st 7991 2nd c2nd 7992 CVecOLDcvc 30367 NrmCVeccnv 30393 +𝑣 cpv 30394 ·𝑠OLD cns 30396 normCVcnmcv 30399 CPreHilOLDccphlo 30621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-1st 7993 df-2nd 7994 df-vc 30368 df-nv 30401 df-va 30404 df-ba 30405 df-sm 30406 df-0v 30407 df-nmcv 30409 df-ph 30622 |
This theorem is referenced by: phpar 30633 |
Copyright terms: Public domain | W3C validator |