MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29vva Structured version   Visualization version   GIF version

Theorem r19.29vva 3211
Description: A commonly used pattern based on r19.29 3111, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 4-Nov-2024.)
Hypotheses
Ref Expression
r19.29vva.1 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
r19.29vva.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
r19.29vva (𝜑𝜒)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜒   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem r19.29vva
StepHypRef Expression
1 r19.29vva.1 . . 3 ((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)
2 r19.29vva.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)
31, 2reximddv2 3210 . 2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
4 idd 24 . . 3 ((𝑥𝐴𝑦𝐵) → (𝜒𝜒))
54rexlimivv 3197 . 2 (∃𝑥𝐴𝑦𝐵 𝜒𝜒)
63, 5syl 17 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  wrex 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-rex 3068
This theorem is referenced by:  trust  24154  utoptop  24159  metustto  24482  restmetu  24499  tgbtwndiff  28330  legov  28409  legso  28423  tglnne  28452  tglndim0  28453  tglinethru  28460  tglnne0  28464  tglnpt2  28465  footexALT  28542  footex  28545  midex  28561  opptgdim2  28569  cgrane1  28636  cgrane2  28637  cgrane3  28638  cgrane4  28639  cgrahl1  28640  cgrahl2  28641  cgracgr  28642  cgratr  28647  cgrabtwn  28650  cgrahl  28651  dfcgra2  28654  sacgr  28655  acopyeu  28658  f1otrge  28696  suppovss  32486  cyc3genpm  32894  cyc3conja  32899  archiabllem2c  32924  rloccring  33009  rloc1r  33011  fracfld  33019  ringlsmss1  33130  ringlsmss2  33131  mxidlprm  33208  qsdrngilem  33230  zringfrac  33277  lindsunlem  33355  dimkerim  33358  txomap  33468  qtophaus  33470  pstmfval  33530  eulerpartlemgvv  34029  tgoldbachgtd  34327  primrootscoprmpow  41602  posbezout  41603  primrootscoprbij2  41606  primrootspoweq0  41609  aks6d1c2lem4  41630  aks6d1c2  41633  aks6d1c6lem3  41676  aks6d1c6lem5  41681  irrapxlem4  42276
  Copyright terms: Public domain W3C validator
OSZAR »