MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrane3 Structured version   Visualization version   GIF version

Theorem cgrane3 28635
Description: Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
cgrahl1.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
cgrane3 (𝜑𝐸𝐷)

Proof of Theorem cgrane3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . . 4 𝑃 = (Base‘𝐺)
2 iscgra.i . . . 4 𝐼 = (Itv‘𝐺)
3 iscgra.k . . . 4 𝐾 = (hlG‘𝐺)
4 simpllr 774 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥𝑃)
5 iscgra.d . . . . 5 (𝜑𝐷𝑃)
65ad3antrrr 728 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷𝑃)
7 iscgra.e . . . . 5 (𝜑𝐸𝑃)
87ad3antrrr 728 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐸𝑃)
9 iscgra.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
109ad3antrrr 728 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
11 simpr2 1192 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝐷)
121, 2, 3, 4, 6, 8, 10, 11hlne2 28427 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐷𝐸)
1312necomd 2987 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)) → 𝐸𝐷)
14 cgrahl1.2 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
15 iscgra.a . . . 4 (𝜑𝐴𝑃)
16 iscgra.b . . . 4 (𝜑𝐵𝑃)
17 iscgra.c . . . 4 (𝜑𝐶𝑃)
18 iscgra.f . . . 4 (𝜑𝐹𝑃)
191, 2, 3, 9, 15, 16, 17, 5, 7, 18iscgra 28630 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
2014, 19mpbid 231 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))
2113, 20r19.29vva 3205 1 (𝜑𝐸𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2931  wrex 3061   class class class wbr 5141  cfv 6542  ⟨“cs3 14824  Basecbs 17178  TarskiGcstrkg 28248  Itvcitv 28254  cgrGccgrg 28331  hlGchlg 28421  cgrAccgra 28628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5358  ax-pr 5422  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2932  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5569  df-eprel 5575  df-po 5583  df-so 5584  df-fr 5626  df-we 5628  df-xp 5677  df-rel 5678  df-cnv 5679  df-co 5680  df-dm 5681  df-rn 5682  df-res 5683  df-ima 5684  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7990  df-2nd 7991  df-frecs 8284  df-wrecs 8315  df-recs 8389  df-rdg 8428  df-1o 8484  df-er 8722  df-map 8844  df-en 8962  df-dom 8963  df-sdom 8964  df-fin 8965  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11475  df-neg 11476  df-nn 12242  df-2 12304  df-3 12305  df-n0 12502  df-z 12588  df-uz 12852  df-fz 13516  df-fzo 13659  df-hash 14321  df-word 14496  df-concat 14552  df-s1 14577  df-s2 14830  df-s3 14831  df-hlg 28422  df-cgra 28629
This theorem is referenced by:  cgracom  28643  cgratr  28644  cgraswaplr  28646  dfcgra2  28651  leagne3  28672  tgsas2  28677  tgasa1  28679
  Copyright terms: Public domain W3C validator
OSZAR »