MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabex2 Structured version   Visualization version   GIF version

Theorem rabex2 5336
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
rabex2.1 𝐵 = {𝑥𝐴𝜓}
rabex2.2 𝐴 ∈ V
Assertion
Ref Expression
rabex2 𝐵 ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem rabex2
StepHypRef Expression
1 rabex2.2 . 2 𝐴 ∈ V
2 rabex2.1 . . 3 𝐵 = {𝑥𝐴𝜓}
3 id 22 . . 3 (𝐴 ∈ V → 𝐴 ∈ V)
42, 3rabexd 5335 . 2 (𝐴 ∈ V → 𝐵 ∈ V)
51, 4ax-mp 5 1 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  {crab 3429  Vcvv 3471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-in 3954  df-ss 3964
This theorem is referenced by:  rab2ex  5337  mapfien2  9433  cantnffval  9687  nqex  10947  gsumvalx  18636  psgnfval  19455  odval  19489  sylow1lem2  19554  sylow3lem6  19587  ablfaclem1  20042  psrass1lemOLD  21874  psrass1lem  21877  psrbas  21878  psrelbas  21879  psrmulfval  21886  psrmulcllem  21888  psrvscaval  21893  psr0cl  21895  psr0lid  21896  psrnegcl  21897  psrlinv  21898  psr1cl  21904  psrlidm  21905  psrdi  21908  psrdir  21909  psrass23l  21910  psrcom  21911  psrass23  21912  mvrval  21924  mplsubglem  21941  mpllsslem  21942  mplsubrglem  21946  mplvscaval  21958  mplmon  21973  mplmonmul  21974  mplcoe1  21975  ltbval  21981  mplmon2  22005  evlslem2  22025  evlslem3  22026  evlslem1  22028  psdval  22083  rrxmet  25349  mdegldg  26015  lgamgulmlem5  26978  lgamgulmlem6  26979  lgamgulm2  26981  lgamcvglem  26985  upgrres1lem1  29135  frgrwopreg1  30141  dlwwlknondlwlknonen  30189  nsgmgc  33135  nsgqusf1o  33139  eulerpartlem1  33987  eulerpartlemt  33991  eulerpartgbij  33992  ballotlemoex  34105  satffunlem2lem2  35016  mapdunirnN  41123  mplmapghm  41789  evlsvvvallem2  41795  selvvvval  41818  evlsmhpvvval  41828  pwfi2en  42521  smfresal  46176  oddiadd  47236  2zrngadd  47305  2zrngmul  47313
  Copyright terms: Public domain W3C validator
OSZAR »