MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23l Structured version   Visualization version   GIF version

Theorem psrass23l 21910
Description: Associative identity for the ring of power series. Part of psrass23 21912 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 14-Aug-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass23l.k 𝐾 = (Base‘𝑅)
psrass23l.n · = ( ·𝑠𝑆)
psrass23l.a (𝜑𝐴𝐾)
Assertion
Ref Expression
psrass23l (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   × (𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrass23l
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . 9 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass23l.n . . . . . . . . 9 · = ( ·𝑠𝑆)
3 eqid 2728 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4 psrass.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
5 eqid 2728 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
6 psrass.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 psrass23l.a . . . . . . . . . . . 12 (𝜑𝐴𝐾)
87adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝐴𝐾)
9 psrass23l.k . . . . . . . . . . 11 𝐾 = (Base‘𝑅)
108, 9eleqtrdi 2839 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝐴 ∈ (Base‘𝑅))
1110adantr 480 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐴 ∈ (Base‘𝑅))
12 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1312ad2antrr 725 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋𝐵)
14 ssrab2 4075 . . . . . . . . . 10 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
15 simpr 484 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
1614, 15sselid 3978 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
171, 2, 3, 4, 5, 6, 11, 13, 16psrvscaval 21893 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝐴 · 𝑋)‘𝑥) = (𝐴(.r𝑅)(𝑋𝑥)))
1817oveq1d 7435 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘f𝑥))))
19 psrring.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2019ad2antrr 725 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
211, 3, 6, 4, 13psrelbas 21879 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
2221, 16ffvelcdmd 7095 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
23 psrass.y . . . . . . . . . . 11 (𝜑𝑌𝐵)
2423ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌𝐵)
251, 3, 6, 4, 24psrelbas 21879 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
26 eqid 2728 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
276, 26psrbagconcl 21867 . . . . . . . . . . 11 ((𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
2827adantll 713 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
2914, 28sselid 3978 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
3025, 29ffvelcdmd 7095 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
313, 5ringass 20193 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (Base‘𝑅) ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
3220, 11, 22, 30, 31syl13anc 1370 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
3318, 32eqtrd 2768 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))
3433mpteq2dva 5248 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))
3534oveq2d 7436 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
36 eqid 2728 . . . . 5 (0g𝑅) = (0g𝑅)
3719adantr 480 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
386psrbaglefi 21865 . . . . . 6 (𝑘𝐷 → {𝑦𝐷𝑦r𝑘} ∈ Fin)
3938adantl 481 . . . . 5 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
403, 5, 20, 22, 30ringcld 20199 . . . . 5 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ (Base‘𝑅))
41 ovex 7453 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
426, 41rabex2 5336 . . . . . . . . 9 𝐷 ∈ V
4342mptrabex 7237 . . . . . . . 8 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V
44 funmpt 6591 . . . . . . . 8 Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
45 fvex 6910 . . . . . . . 8 (0g𝑅) ∈ V
4643, 44, 453pm3.2i 1337 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V)
4746a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V))
48 suppssdm 8182 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
49 eqid 2728 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))
5049dmmptss 6245 . . . . . . . 8 dom (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ⊆ {𝑦𝐷𝑦r𝑘}
5148, 50sstri 3989 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘}
5251a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘})
53 suppssfifsupp 9404 . . . . . 6 ((((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑦𝐷𝑦r𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦r𝑘})) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
5447, 39, 52, 53syl12anc 836 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) finSupp (0g𝑅))
553, 36, 5, 37, 39, 10, 40, 54gsummulc2 20253 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
5635, 55eqtrd 2768 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
5756mpteq2dva 5248 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
58 psrass.t . . 3 × = (.r𝑆)
591, 2, 9, 4, 19, 7, 12psrvscacl 21894 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝐵)
601, 4, 5, 58, 6, 59, 23psrmulfval 21886 . 2 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
611, 4, 58, 19, 12, 23psrmulcl 21889 . . . 4 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
621, 2, 9, 4, 5, 6, 7, 61psrvsca 21892 . . 3 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘f (.r𝑅)(𝑋 × 𝑌)))
6342a1i 11 . . . 4 (𝜑𝐷 ∈ V)
64 ovexd 7455 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) ∈ V)
65 fconstmpt 5740 . . . . 5 (𝐷 × {𝐴}) = (𝑘𝐷𝐴)
6665a1i 11 . . . 4 (𝜑 → (𝐷 × {𝐴}) = (𝑘𝐷𝐴))
671, 4, 5, 58, 6, 12, 23psrmulfval 21886 . . . 4 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
6863, 8, 64, 66, 67offval2 7705 . . 3 (𝜑 → ((𝐷 × {𝐴}) ∘f (.r𝑅)(𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
6962, 68eqtrd 2768 . 2 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))))
7057, 60, 693eqtr4d 2778 1 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  {crab 3429  Vcvv 3471  wss 3947  {csn 4629   class class class wbr 5148  cmpt 5231   × cxp 5676  ccnv 5677  dom cdm 5678  cima 5681  Fun wfun 6542  cfv 6548  (class class class)co 7420  f cof 7683  r cofr 7684   supp csupp 8165  m cmap 8845  Fincfn 8964   finSupp cfsupp 9386  cle 11280  cmin 11475  cn 12243  0cn0 12503  Basecbs 17180  .rcmulr 17234   ·𝑠 cvsca 17237  0gc0g 17421   Σg cgsu 17422  Ringcrg 20173   mPwSer cmps 21837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-ofr 7686  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-seq 14000  df-hash 14323  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-plusg 17246  df-mulr 17247  df-sca 17249  df-vsca 17250  df-tset 17252  df-0g 17423  df-gsum 17424  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mhm 18740  df-grp 18893  df-minusg 18894  df-ghm 19168  df-cntz 19268  df-cmn 19737  df-abl 19738  df-mgp 20075  df-ur 20122  df-ring 20175  df-psr 21842
This theorem is referenced by:  psrass23  21912  ply1ass23l  22145
  Copyright terms: Public domain W3C validator
OSZAR »